

JURNAL ILMIAH AGRINECA

ISSN: 2721-074X (Online) - 2301-6698 (Print)

Available on: http://ejournal.utp.ac.id/index.php/AFP/index

This is Under CC BY SA Licence

UJI EFEKTIVITAS BIOPESTISIDA TEMBAKAU TERHADAP SERANGAN HAMA THRIPS (Thrips tabaci L) PADA PERTUMBUHAN PUCUK TANAMAN TEH (Camellia sinensis)

The Effectiveness of Tobacco Biopesticides Against the Thrips (Thrips Tabaci L) on the Growth of Tea (Camellia Sinensis) Plants

Kris Julianto¹, Tyas S.K. Dewi², Endang Suprapti², Dwi Susilo Utami², Haryuni²*

Mahasiswa Fakultas Pertanian Universitas Tunas Pembangunan Surakarta
 Fakultas Pertanian Universitas Tunas Pembangunan Surakarta
 *Email korespondensi: haryuni@lecture.utp.ac.id

Diterima: 8 November 2021 Direvisi: 24 Desember 2021 Disetujui terbit: 27 Januari 2022

ABSTRACT

Tea (Camellia sinensis L.) is a plant whose shoots are taken for a beverage. Tea plants are susceptible to attack by Plant Pest Organisms (OPT) which have the potential to reduce yields by up to 30%, in severe attacks can reduce production by up to 50%. The purpose of this study was to determine the effect of tobacco biopesticide treatment on the intensity of attack and the percentage of pest attack (Thrips tabaci L) on the shoots of tea plants. The study was carried out at PT Rumpun Sari Kemuning in Kemuning, Ngargoyoso, Karanganyar, on April 1 - June 29, 2021. This study used a Completely Randomized Block Design method with 6 treatments and 4 replications. The first treatment was J0: Control, J1: 0.05% Biopesticide Concentration, J2: 0.1% Biopesticide Concentration, J3: 0.15% Biopesticide Concentration, J4: 0.20% Biopesticide Concentration, J5: 0.25 Biopesticide Concentration %, the biopesticide treatment was carried out 12 times. The results of this study showed that the use of tobacco biopesticide 0.20% gave the best results against the percentage of pest attacks, namely 40.00%. And the use of 0.25% biopesticide gave the best results against the percentage of pest attack intensity of 8.75%.

Keywords: Camellia sinensis, Thrips tabaci, Tobacco Biopesticides

ABSTRAK

Teh (*Camellia sinensis* L.) merupakan tanaman yang diambil pucuknya untuk bahan minuman. Tanaman teh rentan terhadap serangan Organisme Pengganggu Tanaman (OPT) yang berpotensi menurunkan hasil hingga 30%, pada serangan berat dapat menurunkan produksi hingga 50%. Tujuan dari penelitian ini yaitu untuk mengetahui pengaruh perlakuan biopestisida tembakau terhadap intensitas serangan dan presentase serangan hama (*Thrips tabaci* L.) pada bagian pucuk tanaman teh. Penelitian telah dilaksanakan di PT Rumpun Sari Kemuning di Kemuning, Ngargoyoso, Karanganyar, pada tanggal 1 april - 29juni tahun 2021. Penelitian ini menggunakan metode Rancangan Acak Kelompok Lengkap 6 perlakuan dan 4 ulangan. Perlakuan pertama yaitu J0: Kontrol, J1: Konsentrasi Biopestisida 0,05%, J2: Konsentrasi Biopestisida 0,1%, J3: Konsentrasi Biopestisida 0,15%, J4: Konsentrasi Biopestisida 0,20%, J5: Konsentrasi Biopestisida 0,25%, perlakuan biopestisida dilakukan sebanyak 12 kali. Hasil penelitian ini menunjukkan bahwa penggunaan biopestisida tembakau 0,20% memberikan hasil terbaik terhadap persentase serangan hama yaitu 40,00 %. Dan penggunaan biopestisida 0,25% memberikan hasil terbaik terhadap persentase intensitas serangan hama sebesar 8,75%.

Kata kunci: Camellia sinensis, Thrips tabaci, biopestisida tembakau

PENDAHULUAN

Teh (*Camellia sinensis* L.) merupakan tanaman yang dimanfaatkan pucuknya sabagai bahan minuman. Indonesia memiliki

JURNAL ILMIAH AGRINECA

ISSN: 2721-074X (Online) - 2301-6698 (Print)
Available on: http://ejournal.utp.ac.id/index.php/AFP/index

This is Under CC BY SA Licence

ribuan hektar perkebunan teh yang hasilnya digunakan untuk memenuhi kebutuhan dalam negeri dan untuk diekspor ke luar negeri. Namun tanaman teh sangat rentan terhdap serangan Organisme Pengganggu Tanaman (OPT). Menurut Rayati dalam Sudjarmoko (2015) Serangan OPT dapat menyebabkan penurunan hasil panen hingga 30%, dan pada serangan berat penurunan hasil panen mencapai 50%, jika persentasi penurunan panen tinggi akan menyebakan tidak terpenuhinya permintaan dari luar negeri. (Thrips tabaci L.) adalah salah satu jenis hama berukuran sangat kecil yang memiliki tipe mulut menusuk dan menghisap (stylet) (Najoan dkk., 2016). Pengendalian hama thrips harus dilakukan dengan serius, karena trips merupakan hama yang dapat menyerang tanaman secara langsung dan berpotensi menjadi vector suatu virus (Zvarikova dkk., 2020)

thrip dapat menyebabkan Hama penurunan produksi teh. Petani sangat bergantung dengan pestisida kimia sintetis mengendalikan OPT, hal ini dikarenakan efektifitas pestisida kimia sintetis cepat dirasakan oleh petani. Menuru Singkoh (2019) penggunaan pestisida kimia sintetis dapat memberikan dampak yang berbahaya bagi lingkungan sekitar, dapat membunuh musuh alami, dapat menyebabkan resistensi dan resurjensi hama, tertimbunnya residu kimia dalam produk pertanian yang berbahaya bagi konsumen. Namun masih banyak petani menggunakan pestisida kimia sintetis, hal ini dikarenakan selain pestisida sintetis mudah diperoleh, juga karena belum ada pestisida alternatif yang ramah lingkungan yang tersedia di lapangan (Rukmini dkk., 2004).

Penggunaan pestisida kimia sintetis yang berlebihan akan menimbulkan pencemaran lingkungan dan terbunuhnya agensia pengendali hayati dialam, selain itu residu kimia yang terdapat dalam pucuk teh akan membahayakan bagi konsumennya. Ardiwinata dkk (2018)., menyatakan pestisida kimia sintetis dapat merusak kesehatan berisat teratogenik manusia, dan

mematikan pada manusia dan hewan. Oleh karena itu perlu adanya pengendalian OPT yang ramah lingkungan, yaitu dengan menggunakana pestisida organik biopestisida. Biopestisida atau pestisida organik adalah pestisida yang berasal dari bahan alami seperti tumbuh-tumbuhan yang digunakan untuk mencegah dan mengendalikan organisme pengganggu tanaman atau disebut juga pestisida hayati. Sedangkan menurut Tijjani dkk (2016)., biopestisida adalah zat alami dari organisme hidup (musuh alami) atau produk mikroba, fitokimia yang dapat mengendalikan hama dengan mekanisme ramah lingkungan. Biopestisida salah satu solusi ramah lingkungan dalam menekan pengaruh negatif penggunaan pestisida kimia yang berlebihan, (Sumartini, 2016).

Keunggulan biopestisida adalah mudah terdegradasi, bekerja cepat, memiliki toksisitas rendah terhadap mamalia, dan fitotoksisitas rendah, Salah satu tumbuhan yang dapat digunakan sebagai bahan biopestisida yaitu tembakau (Nicotiana tabacum L.) daun tanaman tembakau mengandung 2-8% nikotin, nikotin tembakau merupakan salah satu metabolit sekunder berjenis alkaloid yang memiliki sifat racun apabila digunakan sebagai insektisida, fungisida, akarisida, dan molusksida. Emiliani Nova dkk (2017), menyatakan bahwa selain mengandung nikotin yang tinggi, daun senyawa tembakau juga mengandung antimikroorganisme seperti saponin, flavonoid, dan polifenol.

Inokulasi jamur Fusarium oxysporum f.sp vanillae dengan biopestisida tembakau pada tanaman vanili yang diinduksi dengan BNR meningkatkan kandungan Nitrogen, fosfor dan kalium (Haryuni dkk., 2020). Pengujian terhadap biopestisida tembakau menurunkan persentase dan intensitas buah kopi yang terserang CBB masing-masing sebesar 1,54% dan 0,33% (Haryuni dkk., 2018), didukung oleh hasil pengujian Tyas dkk., (2018) aplikasi biopestisida berbeda nyata terhadap kandungan protein pada biji dan kulit kopi. Biopestisida daun tembakau memiliki kelebihan antara lain: (1) lebih mudah terurai oleh alam sehingga dampak racunnya tidak menetap dalam waktu

JURNAL ILMIAH AGRINECA

ISSN: 2721-074X (Online) - 2301-6698 (Print)

Available on: http://ejournal.utp.ac.id/index.php/AFP/index

This is Under CC BY SA Licence

yang lama di alam bebas, (2) residu biopestisida tembakau tidak bertahan lama pada tanaman sehingga tanaman yang disemprot lebih aman untuk dikonsumsi, dan (3) dari segi ekonomi, penggunaan biopestisida memberikan nilai tambah pada produk yang dihasilkan (Astuti dan Widyastuti, 2016).

Dosis dan konsentrasi yang efektif untuk penggunaan biopestisida dari tembakau masih belum diketahui, maka diperlukan penelitian uji efektivitas biopestisida tembakau untuk mengetahui dosis dan konsentrasi yang efektif. Sehingga hasil penelitian ini akan bermanfaat bagi petani teh yang ada di Indonesia. Tujuan penelitian ini untuk mengetahui effektifitas biopestisida tembakau terhadap serangan hama Thrips (*Thrips tabaci* L.) pada pertumbuhan pucuk tanaman teh.

METODE PENELITIAN

Penelitian di laksanakan pada bulan April sampai bulan Juni tahun 2021 di PT Rumpun Sari Kemuning, Desa Kemuning, Kecamatan Ngargoyoso, Kabupaten Karanganyar, Jawa Tengah. Alat yang digunakan dalam penelitian diantaranya: knapsack sprayer, gelas ukur,

timbangan, meteran, ember, label, tali rafia, kayu/ bambu. Bahan yang digunakan antara lain: tanaman teh, biopestisida tembakau, jamur Fusarium oxysporum f.sp vanillae Penelitian ini menggunakan Rancangan Acak Kelompok Lengkap 6 perlakuan dan 4 ulangan. Masingmasing perlakuan yaitu J0: Kontrol, J1: Konsentrasi Biopestisida 0.05%, Konsentrasi Biopestisida 0,1%, J3: Konsentrasi Biopestisida 0,15%, J4: Konsentrasi Biopestisida 0,20%, J5: Konsentrasi Biopestisida 0,25%, perlakuan biopestisida sebanyak 12 kali. Didapatkan 6 perlakuan dan masing-masing perlakuan diulang 4 kali sehingga didapatkan 24 tanaman penelitian.

HASIL DAN PEMBAHASAN

Untuk mengetahui pengaruh perlakuan biopestisida tembakau terhadap hasil panen dan intensitas serangan hama pada pucuk tanaman teh (*Camellia sinensis* L.) dilakukan analisis dengan ANOVA (Analisis Varian) atau sidik ragam. Apabila ada perbedaan nyata dilakukan uji lanjut dengan uji DMRT (Duncan Multiple Range Test) pada taraf 5% untuk membedakan antara taraf.

Tabel 1. Hasil ringkasan sidik ragam pengaruh perberian biopestisida tembakau terhadap hasil panen intensitas serangan dan persentase serangan hama pada pucuk tanaman teh (*Camellia sinensis*)

No.	Parameter	Konsentrasi	Nilai		
		Biopestisida Tembakau (J)	Tertinggi	Terendah	
1.	Jumlah Pucuk Peko (helai)	ns	14,75 (J5)	7,00 (J2)	
2	Jumlah Pucuk burung (helai)	ns	117,75 (J5)	108,75 (J2)	
3	Berat Pucuk Peko (g)	ns	8,75 (J5)	3,50 (J2)	
4	Berat Pucuk Burung (g)	ns	96,50 (J2)	91,25 (J5)	
5	Berat 100 pucuk (g)	ns	93,75 (J3)	86,25 (J5)	
6	Luas daun (cm)	ns	83,83 (J5)	74,15 (J0)	
7	Intensitas serangan hama (%)	**	12,00 (J0)	10,00 (J3)	

Keterangan: ns: Tidak berbeda nyata, *: Berbeda nyata (α 5%), **: Berbeda sangat nyata (α 1%)

Perlakuan pemberian konsetrasi biopestisida tembakau (J) pada tanaman teh memberikan hasil yang berbeda tidak nyata terhadap parameter jumlah pucuk peko, jumlah pucuk burung, berat pucuk peko, berat pucuk burung, berat 100 pucuk dan luas daun, tetapi

berbeda sangat nyata terhadap parameter intensitas serangan hama. Hal ini disebabkan biopestisida tembakau dapat mencegah serangan hama thrips (Fitri, Mellisa 2014). Untuk mengetahui perbedaan antar perlakuan dilakukan uji lanjut dengan uji DMRT (Duncan

JURNAL ILMIAH AGRINECA

ISSN: 2721-074X (Online) - 2301-6698 (Print)

Available on: http://ejournal.utp.ac.id/index.php/AFP/index

This is Under CC BY SA Licence

Multiple Range Test) pada taraf 5% dan hasilnya disajikan pada tabel 2.

Tabel 2. Uji jarak berganda ducan taraf 5% uji pemberian biopestisida tembakau terhadap hasil panen pucuk tanaman teh (*Camellia sinensis*) dan serangan hama thrips (*Thrips tabaci L*)

Perla-	Parameter							
kuan	Jumlah pucuk peko (helai)	Jumlah pucuk burung (helai)	Berat pucuk peko (g)	Berat pucuk burung (g)	Berat 100 pucuk (g)	Luas daun (cm)	Intensitas serangan hama (%)	
Kon	sentrasi Biop	estisida Temba	kau (J)					
J0	13,5 a	110,00 a	7,75 a	92,00 a	90,25 a	74,15 a	12.00 c	
J1	13,5 a	110,75 a	6,5 a	93,5 a	92,2 a	82,63 a	11,00 bc	
J2	7,00 a	108,75 a	3,5 a	96,5 a	92,00 a	79,83 a	10,50 b	
J3	8,00 a	112,00 a	4,00 a	96,00 a	93,75 a	80,10 a	10,00 ab	
J4	11,75 a	112,00 a	5,75 a	94,25 a	86,75 a	78,28 a	10,75 bc	
J5	14,75 a	117,75 a	8,75 a	91,25 a	86,25 a	83,83 a	8,75 a	

Keterangan: Perlakuan pada kolom yang sama dan diikuti dengan huruf yang sama menunjukkan berbeda tidak nyata menurut DMRT 5%

Perlakuan J0 berbeda nyata dengan perlakuan J2, J3 dan J5 namun berbeda tidak nyata dengan perlakuan J1 dan J4 pada parameter Intensitas serangan hama. Rata-rata tertinggi terdapat pada perlakuan J0 yaitu 12,00 dan terendah pada perlakuan J5 yaitu 8,75 yang termaksud dalam kriteria serangan rusak ringan. Konsentrasi yang baik terhadap parameter intensitas serangan hama yaitu J5 dengan konsentrasi 0,25% yang dapat menurunkan intensitas serangan hama sebesar 2,25%, hal ini menunjukkan bahwa perlakuan biopestisida tembakau berpengaruh terhadap intensitas serangan hama. Hal ini dikareakan kandungan nikotin dalam biopestisida tembakau dapat menyerang saraf pada hama, sehingga nafsu makan hama terganggu. Hal ini sesuai dengan Handayani (2018) yang menyatakan bahwa nikotin merupakan racun saraf yang bekerja secara cepat, dan dapat bertindak sebagai racun kontak pada hama.

Perlakuan J0 pada parameter persetase serangan hama berbeda nyata dengan pelakuuan J1, J2, J3, J4 dan J5. Rata-rata tertinggi terdapat pada perlakuan J0 yaitu 62,50 dan terendah pada perlakuan J4 yaitu 40,00 yang termaksud dalam kriteria persentase serangan rendah, konsentrasi yang baik terhadap parameter persentase serangan yaitu J4 dengan konsentrasi 0,20% yang dapat menurunkan persentase

serangan sebanyak 22%. Dengan perlakuan biopestisida ini dapat menurunkan intensitas serangan dan persentase serangan hama thrips sehingga tanaman teh dapat tumbuh dan berkembang dengan baik serta menghasilkan kualitas yang baik. Hal ini disebabkan karena biopestisida tembakau mengandung nikotin dan senyawa alkaloid yang bekerja lebih efektif dalam menghambat perkembangan Menurut Firma (2019) nikotin dalam biopestisida berperan sebagai racun kontak terhadap hama penghisap yang bertubuh lunak seperti thrips. Selain itu nikotin juga berfungsi sebagai penolak kehadiran serangga, karena nikotin memiliki bau yang menyengat sehingga mencegah serangga pemakan tanaman (Soenandar M dkk., 2010).

Seluruh perlakuan pada parameter jumlah pucuk peko berbeda tidak nyata. Rata-rata tertinggi pada parameter jumlah pucuk peko terdapat pada perlakuan J5 yaitu 14,75 helai dan terendah pada perlakuan J2 yaitu 7,00 helai. Hal ini menunjukan bahwa perlakuan pemberian biopestisida tembakau tidak berpengaruh terhadap jumlah pucuk peko yang di hasilkan tanaman teh. Hal ini bisa tejadi karena pertumbuhan pucuk peko di dominasi oleh sifat genetik dari tanaman teh dan juga lingkungan, sesuai pendapat Subandi dkk., (2013) yang menyatakan bahwa pertumbuhan pucuk burung

JURNAL ILMIAH AGRINECA

ISSN: 2721-074X (Online) - 2301-6698 (Print)

 $Available \ on: \underline{http://ejournal.utp.ac.id/index.php/AFP/index}$

This is Under CC BY SA Licence

disebabkan beberapa hal yaitu genetika, kondisi tanaman yang kurang sehat, serta kondisi lingkungan (seperti iklim dan tanah) yang tidak mendukung pertumbuhan. Selain itu biopestisida tembakau juga tidak mengandung nutrisi yang bermanfaat bagi pertumbuhan teh, sehingga perlakuan biopestisida tembakau tidak berpengaruh terhadap pucuk peko dan pucuk burung. Biopestisida tembakau hanya mengandung nikotin, alkaloid, flavonoid, dan minyak atsiri (Khalalia, 2016).

Perlakuan pemberian biopestisida berbeda tidak nyata terhadap parameter jumlah pucuk burung. Rata-rata tertinggi parameter jumlah pucuk burung terdapat pada perlakuan J5 yaitu 117,75 helai dan terendah pada perlakuan J2 yaitu 110,00 helai. Hal ini menunjukan bahwa perlakuan pemberian biopestisida tembakau tidak berpengaruh terhadap jumlah pucuk burung. Hal ini tejadi karena pertumbuhan pucuk burung di dominasi oleh sifat genetik dari tanaman teh, selain itu kondisi lingkungan seperti tanah dan juga cuaca seperti: suhu, kelembaban, curah hujan, dan radiasi matahari memberikan pengaruh terhadap pertumbuhan pucuk burung (Anjarsari dkk., 2020).

Seluruh perlakuan pemberian biopestisida berbeda tidak nyata terhadap parameter berat pucuk peko, berat pucuk burung dan berat 100 pucuk. Rata-rata tertinggi parameter berat pucuk peko terdapat pada perlakuan J5 yaitu 8,57 dan terendah pada perlakuan J2 yaitu 3,5, pada parameter berat pucuk burung rata-rata tertinggi terdapat pada perlakuan J2 yaitu 96,50 dan terendah pada perlakuan J5 yaitu 91,25, pada parameter berat 100 pucuk rata-rata tertinggi terdapat pada perlakuan J3 yaitu 93,75 dan terendah pada perlakuan J5 yaitu 86,25. Perlakuan pemberian biopestisida tembakau tidak berpengaruh terhadap berat pucuk peko, berat pucuk burung dan berat 100 pucuk yang dihasilkan tanaman teh. Hal ini terjadi karena biopestisida tembakau tidak mengandung nutrisi, sehingga dibutuhkan pemberian pupuk tambahan untuk meningkatkan pertumbuhan teh setelah terserang hama (Effendi, 2010).

Perlakuan pemberian biopestisida tembakau tidak berpengaruh terhadap berat pucuk peko, berat pucuk burung serta berat 100 pucuk tanaman teh. Hal ini terjadi karena pertumbuhan pucuk merupakan proses alamiah tanaman teh. Seperti pendapat Yue dkk., (2014) yang mengatakan proses pertumbuhan pucuk merupakan proses alamiah tanaman teh dari hormon asam absitat yang mempengaruhi periode dorman pada pucuk, sehingga tanaman akan menghasilkan hormon asam absitat jika tanaman mengalami keadaan rawan fisiologis yang disebabkan oleh tumbuhan.

Perlakuan pemberian biopestisida berbeda tidak nyata terhadap parameter luas daun. Ratarata tertinggi parameter luas daun terdapat pada perlakuan J5 yaitu 83,83 dan terendah pada perlakuan J0 yaitu 74,15. Hal ini terjadi karena manfaat dari biopestisida tembakau untuk mengendalikan hama yang ada pada tanaman teh, sehingga biopestisida ini tidak memberikan nutrisi untuk perkembangan luas daun tanaman teh. Sedangkan tanaman teh membutuhkan unsur hara diantaranya: N, P, K, Mg, S, B, Cu, Fe, Mn, dan Zn dengan jumlah yang terukur (Syafika dkk., 2014).

Perlakuan J0 berpengaruh nyata terhadap perlakuan J2, J3, dan J5 pada parameter intensitas serangan. Namun tidak berbeda nyata terhadap perlauan J1 dan J4. Rata - rata serangan tertinggi terdapat pada perlakuan J0 vaitu: 12.0%, dan terendah pada perlakuan J5 yaitu: 8,75%. Dengan perlakuan pemberian biopestisida dapat menurunkan intensitas serangan hama, sehingga tanaman teh dapat berkembang dengan baik dan menghasilkan produk teh dengan kualitas baik. Hal ini karena biopestisida disebabkan tembakau mengandung nikotin yang mengandung senyawa alkaloid yang bekerja lebih efektif dalam menghambat perembangan trips. Nikotin berfungsi sebagai penolak kehadiran serangga yang disebabkan bau yang menyengat sehingga mencegah serangga memakan tanaman (Soenandar dkk., 2010).

KESIMPULAN

JURNAL ILMIAH AGRINECA

ISSN: 2721-074X (Online) - 2301-6698 (Print)
Available on: http://ejournal.utp.ac.id/index.php/AFP/index

This is Under CC BY SA Licence

Dari penelitian yang telah dilaksanakan bahwa disimpulkan pemberian dapat biopestisida tembakau berpengaruh terhadap intensitas serangan dan persentase serangan hama (Thrip tabaci L) pada pucuk tanaman teh, dan berpengaruh yang tidak nyata terhadap jumlah pucuk burung, jumlah pucuk peko, berat pucuk burung, berat pucuk peko, berat 100 pucuk dan luas daun tanaman teh. Konsentrasi biopestisida tembakau 0,25% memberikan hasil terbaik terhadap intensitas serangan hama yaitu 8,75%, sedangkan penggunaan konsentrasi biopestisida tembakau 0,20% memberikan hasil terbaik terhadap persentase serangan hama yaitu 40,00 %.

DAFTAR PUSTAKA

- Andre, V. H., Najoan., Juliet, M, E. Mamahit., Betsy, A. N., Pinaria. (2016). Populasi Dan Serangan Hama Thrips Spp. (*Thysanoptera: Thripidae*) Pada Beberapa Varietas Tanaman Krisan Di Kelurahan Kakaskasen Ii Kecamatan Tomohon Utara. Fakultas Pertanian, Uiversitas Sam Ratulangi. 13 halaman. https://ejournal.unsrat.ac.id.
- Anjarsari, I. R. D., · E. Rezamela., · H. Syahrian., V. H. Rahadi. (2020). Pengaruh cuaca terhadap hasil pucuk teh (Camellia sinensis L.(O) Kuntze) klon GMB 7 pada periode jendangan dan pemetikan produksi. Jurnal Kultivasi. 19 (1): 1076-1082.
- Ardiwinata, A. N., L. N. Ginoga., E. Sulaeman., E.
 S. Harsanti. (2018). Pesticide Residue
 Monitoring on Agriculture in Indonesia. Jurnal
 Sumberdaya Lahan. 12 (2): 133-144.
- Astuti, W & C. R. Widyastuti. (2016). Pestisida Organik Ramah Lingkungan Pembasmi Hama Tanaman Sayur. Rekayasa, 14 (2): 115-120.
- Sudjarmoko, B. A., M. Hasibuan., D. Listyati., Samsudin. (2015). Faktor-Faktor Yang Mempengaruhi Kesediaan Petani Membiayai Teknologi Pengendalian Hama Pengisap Pucuk Dan Penyakit Cacar Daun Teh. J. TIDP 2 (1): 21–28.

- Effendi, D. S., M. Syakir., M. Yusron., Wiratno. (2010). Budidaya dan Pasca Panen Teh. Pusat Penelitian dan Pengembangan Perkebunan Badan Penelitian dan Pengembangan Pertanian Kementrian Pertanian Indonesia. 71 halaman.
- Emiliani, N., D. Djufri & M. A. Sarong. (2017).

 Pemanfaatan Ekstrak Tanaman Tembakau (Nicotianae tabacum L.) Sebagai Pestisida Organik Untuk Pengendalian Hama Keong Mas (Pomaceace Canaliculata L.) Di Kawasan Persawahan Gampong Tungkop, Aceh Besar. Jurnal Ilmiah Mahasiswa Fakultas Keguruan dan Ilmu Pendidikan Unsyiah. 2 (2): 58 71.
- Firma, M. G. (2019). Pemanfaatan Ekstrak Daun Tembakau (Nicotiana Tabacum L) Untuk Mengendalikanulat Grayak (Spodoptera Litura F.) Pada Tanaman Sawi (Brassica Juncea L.) di Lapang. Journal of Sustainable Dryland Agriculture. 12 (2): 94 - 101.
- Fitri, M & S. Migunani. (2014). Pembuatan Pestisida Menggunakan Tembakau. Jurnal Inovasi dan Kewirausahaan. 3 (2): 68 - 71.
- Haq. M. S, Y., Rachmiati., Karyudi. (2014). Pengaruh pupuk daun terhadap hasil dan komponen hasil pucuk tanaman teh (Camellia sinensis (L.) O. Kuntze var. Assamica (Mast.) Kitamura). Jurnal Penelitian Teh dan Kina, 17 (2): 47-56.
- Haryuni, T. S. K. Dewi., E. Suprapti., S. F. Rahman., M. Gozan. (2018). The Effect Of Beauveria Bassiana On The Effectiveness Of Nicotiana Tabacum Extract As Biopesticide Against Hypothenemus Hampei To Robusta Coffee. International Journal of Technology 10 (1): 159-166.
- Haryuni, Andre Fahriz Perdana Harahap, Supartini, Achmadi Priyatmojo, Misri Gozan. (2020). The Effects of Biopesticide and Fusarium oxysporum f.sp. vanillae on the Nutrient Content of Binucleate Rhizoctonia Induced Vanilla Plant. International Journal of Agronomy Volume 2020, Article ID 5092893, 6 pages.

JURNAL ILMIAH AGRINECA

ISSN: 2721-074X (Online) - 2301-6698 (Print)

 $A vailable \ on: \underline{http://ejournal.utp.ac.id/index.php/AFP/index}$

This is Under CC BY SA Licence

- R. Khalalia. (2016). Uji Daya Bunuh Granul Ekstrak Limbah Tembakau (Nicotiana Tabacum L.) Terhadap Larva Aedes Aegypti. Unnes Journal of Public Health. 5 (4): 366 - 374.
- Rukmini, W., W.R. Atmadja, S. Suriati., M. Iskandar. (2004). hlm 327-332. Dalam Arifin, M., E. Karmawati, I W. Laba, I W. Winasa, Т. Pudjianto, Dadang, Santoso. Kusumawati., D. Koswanudin, dan Mulyawan (Eds.). Pengaruh CNSL terhadap Helopeltis sp. pada inang alternatif. Prosiding Seminar Nasional Entomologi dalam Perubahan Lingkungan dan Sosial. Bogor, 5 Oktober 2004. 5 halaman.
- Singkoh, M. F. Oktavine., D. Y Katil. (2019).

 Bahaya Pestisida Sintetik (Sosialisasi Dan Pelatihan Bagi Wanita Kaum Ibu Desa Koka Kecamatan Tombulu Kabupaten Minahasa).

 Jurnal Perempuan dan Anak Indonesia. 1 (1): 5-12.
- Soenandar, M., Raharjo, A., & Aeni, M. N. (2010). Petunjuk Praktis Membuat Pestisida Organik. Agro Media Pustaka. 64 halaman.
- Handayani, S.W., D. Prastowo., H. Boesri., A.
 Oktsariyanti., A. S. Joharina. (2018).
 Efektivitas Ekstrak Daun Tembakau (Nicotiana tabacum L) dari Semarang, Temanggung, dan Kendal Sebagai Larvasida Aedes aegypti L.

- Balai Besar Penelitian Pengembangan Vektor dan Reservoir Penyakit, Salatiga. BALABA 14 (1): 23-30.
- Subandi, M., Dikayani., Nurjanah, D. (2013). Physiological pattern of leaf growth at various plucking cycles applied to newly released clones of tea plant (Camellia sinensis LO Kuntze). Asian Journal of Agriculture and Rural Development. 3 (7): 497-504.
- Sumartini. (2016). Biopestisida untuk Pengendalian Hama dan Penyakit Aneka Kacang dan Umbi Balai Penelitian Tanaman Aneka Kacang dan Umbi. Malang penerbit: Iptek Tanaman Pangan 11 (2): 159-166
- Tijjani, A., Bashir, K. A., Mohammed, I., Muhammad, A, Gambo, A. and Musa, H. (2016). Biopesticides for Pests Control. Jurnal of Biopesticides and Agriculture. 3 (1): 6 13.
- Yue C., Cao H., Wang L., Zhou Y., Hao X., Zeng J., Yang. Y. (2014). Molecular cloning and expression analysis of tea plant aquaporin (AQP) gene family. Plant physiology and biochemistry, 83: 65-76.
- Zvarikova., Martina., Rudolf Masarovic., P. Prokop., Peter Fedor. (2020). An updated checklist of thrips from Slovakia with emphasis on economic species. Plant Protection Science. 56. (4): 292–304.