Journal of Smart System
http://ejournal.utp.ac.id/index.php/JSS
<p>Journal of Smart System</p> <p> </p>Smart City Information Systemen-USJournal of Smart System2808-036XSimulasi Saluran Drainase di Jalan Jembangan Kecamatan Sukoharjo Menggunakan Software HEC-RAS 4.1.
http://ejournal.utp.ac.id/index.php/JSS/article/view/4049
<p><em>The road drainage function is as a channel to accommodate runoff from road body and surrounding catchment area. Jembangan Street Sukoharjo District is a strategic road for local residents because it connects Gumpang Village to Slamet Riyadi Highway, and an important road for truck factories that cross road because there are several large factories around it. During rainy season, Jembangan Street Sukoharjo District suddenly experiences inundation and even flooding. This study purpose is to analyze and simulate existing drainage channels ability to accommodate design flood. The analysis methods in this study include Log Pearson III Distribution method to analyze design rainfall, Rational method to analyze design flood, hydraulic equation to analyze existing drainage channel discharge, and drainage channel simulation using HEC-RAS 4.1 software. Based on analysis results, existing drainage channel 0,322 m<sup>3</sup>/s capacity is still able to accommodate design flood for a 2-year (Q2), 5-year (Q5), and 10-year (Q10) return period with each design flood of 0,051 m<sup>3</sup>/s, 0,093 m<sup>3</sup>/s, and 0,134 m<sup>3</sup>/s. The simulation results of downstream drainage channel Sta 0 obtained drainage channel 0,21 m at Q2; 0,32 m at Q5; and 0,41 m at Q10 water level. Flooding on Jembangan Street Sukoharjo District can be caused by garbage accumulation, nuisance plants on channel banks, and road elevations that are lower than drainage channel embankments. To deal with flooding, periodic maintenance is needed on drainage channels, as well as raising road elevation.</em></p>Bonifasius Adwitya Praba UtamaPaska WijayantiHerman Susila
Copyright (c) 2025 Journal of Smart System
2025-01-312025-01-314211110.36728/jss.v4i2.4049Visualisasi Tren Historis Bitcoin Menggunakan Python
http://ejournal.utp.ac.id/index.php/JSS/article/view/4630
<p><em>Bitcoin, as the most popular digital currency, exhibits significant price fluctuations and high volatility, requiring careful analysis to understand price movement trends and patterns. This study aims to visualize Bitcoin’s historical data using Python, focusing on price analysis, transaction volume, and volatility to identify price movement trends. By utilizing Python libraries such as Pandas, Matplotlib, and Plotly, Bitcoin data from 2018 to 2022 is analyzed and visualized in static and interactive graphs. The results indicate a long-term upward trend in Bitcoin prices, despite sharp fluctuations. Interactive visualizations using Plotly allow stakeholders to explore the data further, while correlation analysis reveals a strong relationship between opening and closing prices. The findings are expected to provide better insights for investors and stakeholders in making strategic decisions. This study also recommends leveraging real-time data and sentiment analysis as additional approaches to offer a more comprehensive view of Bitcoin market movements.</em></p>Farid FitriyadiRaska Trihangga Saputra
Copyright (c)
2025-02-122025-02-1242122010.36728/jss.v4i2.4630Klasifikasi Sentimen Ulasan Vision+ di Google Play Store Menggunakan Naïve Bayes
http://ejournal.utp.ac.id/index.php/JSS/article/view/4628
<p><em>Vision+ merupakan platform video on demand di bawah naungan MNC Group yang menawarkan beragam konten, mulai dari saluran TV nasional dan internasional, konten premium, hingga koleksi video berdasarkan genre dari Indonesia dan mancanegara. Platform ini menyediakan beberapa saluran dan layanan streaming gratis, namun akses penuh memerlukan pendaftaran atau langganan premium. Dengan beragamnya layanan yang ditawarkan Vision+, platform ini menargetkan berbagai segmen pelanggan. Oleh karena itu, penelitian ini bertujuan menganalisis sentimen masyarakat atau pengguna Vision+ terhadap aplikasi tersebut. Penelitian ini menggunakan teknik data mining untuk membandingkan klasifikasi dalam analisis sentimen berdasarkan ulasan pengguna di Play Store dengan menerapkan metode Naive Bayes. Metode klasifikasi Naive Bayes, yang didasarkan pada teorema Bayes, dipilih karena kemampuannya dalam menangani data dengan asumsi independensi antar variabel. Penelitian ini diharapkan dapat memberikan wawasan mengenai persepsi publik terhadap Vision+ berdasarkan ulasan yang tersedia.</em></p>Tutus Pandam PradiptaFarid Fitriyadi
Copyright (c)
2025-02-112025-02-1142212910.36728/jss.v4i2.4628