JURNAL TEKNOLOGI REKAYASA ELEKTRO, MATERIAL DAN MANUFAKTUR

https://ejournal.utp.ac.id/index.php/JTREMM

OPTIMASI KINERJA MESIN DENGAN PENINGKATAN TEKANAN POMPA BAHAN BAKAR DAN VARIASI LUBANG INJEKTOR

Ramadhana Luhur Prabangkara¹

1. Universitas Tunas Pembangunan, Surakarta, 57139

*corresponding author: rama.prabangkara@gmail.com

ABSTRAK

Penelitian ini bertujuan untuk mengevaluasi dampak tekanan pompa bahan bakar yang meningkat dan variasi jumlah lubang injektor terhadap kinerja mesin. Seiring dengan perkembangan sistem bahan bakar dari karburator ke injeksi untuk meningkatkan efisiensi bahan bakar, penelitian ini melibatkan tiga tingkat tekanan pompa bahan bakar (2,5 bar, 3 bar, dan 3,5 bar) dan variasi jumlah lubang injektor (3, 6, dan 8 lubang). Kinerja mesin, yang diukur melalui daya dan torsi, dievaluasi melalui metode eksperimental. Hasil menunjukkan pengaruh signifikan dari peningkatan tekanan pompa bahan bakar dan variasi jumlah lubang injektor terhadap kinerja mesin. Daya optimal dicapai pada tekanan pompa bahan bakar 3 bar dengan injektor 6 lubang, menghasilkan 11,63 HP pada 6000 rpm. Torsi terbaik tercatat pada tekanan pompa bahan bakar 3,5 bar dengan injektor 3 lubang, menghasilkan 43,10 Nm pada 3000 rpm. Studi ini menyarankan bahwa jumlah lubang injektor yang lebih tinggi umumnya berkorelasi dengan peningkatan daya dan torsi mesin. Penelitian ini memberikan wawasan berharga untuk mengoptimalkan kinerja mesin melalui konfigurasi tekanan pompa bahan bakar dan injektor yang spesifik, berkontribusi pada kemajuan dalam desain dan efisiensi sistem bahan bakar.

kata kunci: Tekanan Pompa Bahan Bakar, Variasi Lubang Injektor, Kinerja Mesin

ABSTRACT

This study aims to assess the impact of elevated fuel pump pressure and varying injector hole quantities on engine performance. With the evolution of the fuel system from carburetors to injection for enhanced fuel efficiency, the research involved three levels of fuel pump pressure (2.5 bar, 3 bar, and 3.5 bar) and injector hole variations (3, 6, and 8 holes). Engine performance, measured by power and torque, was evaluated through experimental methods. Results revealed a significant influence of increased fuel pump pressure and injector hole variations on engine performance. Optimal power was achieved at 3 bar fuel pump pressure with a 6-hole injector, generating 11.63 HP at 6000 rpm. The best torque was recorded at 3.5 bar fuel pump pressure with a 3-hole injector, producing 43.10 Nm at 3000 rpm. The study suggests that higher injector hole counts generally correlate with increased engine power and torque. This research provides valuable insights for optimizing engine performance through specific fuel pump pressure and injector configurations, contributing to advancements in fuel system design and efficiency.

keywords: Fuel Pump Pressure, Injector Hole Variation, Engine Performance

PENDAHULUAN

Dalam beberapa waktu terakhir, krisis energi, pencemaran lingkungan, dan perubahan iklim telah muncul sebagai tantangan paling mendesak yang dihadapi oleh berbagai negara di dunia. Ketiga isu ini saling berkaitan dan memberikan dampak signifikan terhadap keberlanjutan kehidupan, pembangunan ekonomi, serta kesejahteraan masyarakat secara global [1]. Oleh karena itu, kesadaran akan risiko lingkungan yang berpotensi membahayakan kesehatan manusia semakin meningkat, dengan fokus pada pengendalian emisi mesin. Bahan bakar diesel memiliki masalah kritis terkait emisi gas buang, getaran, dan emisi akustik [2]. Biodiesel dianggap sebagai alternatif bahan bakar ramah lingkungan, biodegradable, efisien energi, terbarukan, secara ilmiah layak, dan non-toksik [3]. Selain itu, biodiesel dianggap salah satu bahan bakar paling aman karena memiliki titik nyala tertinggi di antara semua bahan bakar konvensional [4] dan dapat mengoperasikan mesin diesel dengan sedikit atau tanpa penyesuaian [5]. Biodiesel dapat diproduksi dari berbagai lemak hewan, serta minyak nabati, yang diproses dengan katalis dan alkohol. Misalnya, penggunaan minyak kelapa sawit sebagai biodiesel dikenal sebagai ester metil minyak kelapa sawit, yang semakin populer karena produktivitasnya yang tinggi dan harga yang rendah. Biodiesel yang diproduksi dari minyak kelapa sawit dikategorikan memiliki kandungan asam lemak jenuh yang tinggi dan menunjukkan karakteristik pembakaran yang luar biasa, seperti nilai kalor dan angka cetane, meskipun memiliki viskositas kinematik yang tinggi pada suhu rendah [6]. Peningkatan berkelanjutan pada angka cetane sebenarnya akan mempengaruhi waktu injeksi, koefisien

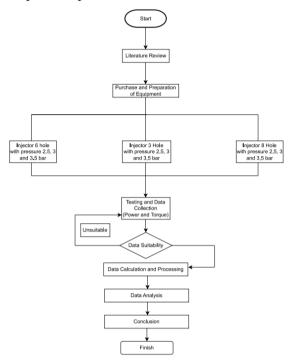
variabel pembakaran, dan aspek pelepasan panas, menurut [7] Berbagai campuran dan atribut bahan bakar memiliki dampak signifikan pada penundaan pembakaran dan proses penguapan, dalam pengaturan eksperimental yang serupa. Secara umum, sebagian besar campuran biodiesel memiliki angka cetane tinggi, tanpa sulfur, tanpa aromatik, dan mengandung hingga 11% berat oksigen. [8] melaporkan bahwa konsentrasi oksigen dalam bahan bakar biodiesel, termasuk campuran minyak nabati, berkisar antara 2,5% hingga 11%, untuk campuran biodiesel 20% dan 100% berdasarkan volume. Sebaliknya, diesel murni tidak mengandung molekul oksigen. Konsentrasi oksigen yang tinggi dalam biodiesel meningkatkan efisiensi pembakaran dan mengurangi beberapa emisi gas buang. Sebaliknya, kelemahan utama biodiesel, yaitu viskositas tinggi, menyebabkan banyak kesulitan dalam proses atomisasi dan pompa. Oleh karena itu, diperlukan proses transesterifikasi. Selain itu, bahan bakar biodiesel memiliki tegangan permukaan dan viskositas yang lebih tinggi daripada bahan bakar diesel biasa, dan perbedaan ini menjadi krusial dalam kondisi dingin, karena laju injeksi bahan bakar sangat dipengaruhi, dan mekanisme pembakaran mungkin terpengaruh sebagai akibatnya. Aditif telah digunakan dalam bahan bakar biodiesel untuk meningkatkan sifat titik penyumbatan filter dingin (CFPP) biodiesel dan, akibatnya, meningkatkan sifat aliran pada suhu rendah, sehingga lebih cocok untuk operasi pada suhu rendah. Pengurangan emisi lingkungan dan pada saat yang sama memaksimalkan daya keluaran mesin menggunakan bahan bakar alternatif telah mengalami perbaikan yang signifikan selama beberapa dekade terakhir [9] Dalam literatur yang berfokus pada peningkatan efisiensi mesin diesel, banyak upaya dapat ditemukan [10] yang membandingkan optimasi algoritma genetika non-evolusioner dan evolusioner untuk kinerja mesin diesel injeksi langsung (DI) [11]. Mereka melaporkan bahwa metode non-evolusi dapat mencapai optimum global lebih cepat (pada run ke-41) dibandingkan dengan algoritma genetika (pada run ke-84). Dampak gabungan dari waktu injeksi bahan bakar, persentase EGR, dan tekanan injeksi bahan bakar terhadap emisi NOx pada mesin diesel stasioner berbahan bakar diesel dianalisis [12]. Dalam hasil optimum yang diperoleh melalui optimasi multirespons, penurunan emisi NOx terlihat dengan peningkatan minimal konsentrasi asap. Dengan peningkatan konsentrasi asap sebesar 5,5% dan penurunan kinerja konversi bahan bakar rem sebesar 2,2%, kombinasi ini mengurangi emisi NOx sebesar 15% dibandingkan dengan kondisi operasi standar. Penelitian telah dilakukan untuk mencapai rasio biodiesel optimal, yang diikuti oleh emisi yang lebih rendah, efisiensi bahan bakar yang dapat diterima, dan rentang operasi mesin yang luas. Aditif telah digunakan dalam bahan bakar biodiesel untuk meningkatkan sifat titik penyumbatan filter dingin (CFPP) biodiesel dan, akibatnya, meningkatkan sifat aliran pada suhu rendah, sehingga lebih sesuai untuk operasi pada suhu rendah [13]. Kekurangan lainnya adalah nilai kalor yang lebih rendah, sekitar 80% dari nilai kalor diesel murni, stabilitas oksidasi yang rendah, titik tuang yang tinggi, dan volatilitas yang rendah [14]. Untuk mengatasi kesulitan terkait viskositas tinggi bahan bakar biodiesel, teknikteknik berikut dapat diterapkan [15] (i) Menggunakan perbandingan campuran kecil dengan diesel murni [16] Umumnya diakui bahwa campuran biodiesel hingga 20% dapat digunakan tanpa modifikasi mesin; (ii) Membuat emulsi mikro menggunakan etanol atau metanol [17] (iii) Menggunakan nanopartikel sebagai aditif bahan bakar untuk menurunkan densitas dan viskositas campuran bahan bakar [18] Dalam hal masalah kelayakan [19] meneliti aspek ekonomi bahan bakar diesel dibandingkan dengan bahan bakar biodiesel yang dihasilkan dari Jatropha curcas dan Moringa oleifera. Menurut para penulis, biaya diesel hampir sama dengan biaya bahan bakar bioalternatif. Pandangan sebelumnya dianalisis secara rinci dan diinterpretasikan secara ilmiah oleh [20] [21] memperkenalkan konsep penilaian siklus hidup (LCA) untuk menyelidiki dan menilai apakah bahan bakar biodiesel merupakan bahan bakar yang berkelanjutan. Tiga fase analisis LCA adalah sebagai berikut: proses transesterifikasi biodiesel, proses pertanian, dan pengolahan minyak. Untuk setiap proses, keseimbangan energi dan gas rumah kaca dihitung. Berdasarkan temuan tersebut, penggunaan biodiesel kelapa sawit ditemukan lebih ramah lingkungan dibandingkan bahan bakar diesel konvensional, dengan pengurangan emisi CO2 sebesar 38% per liter yang dibakar.

METODOLOGI

Banyak penelitian sebelumnya telah dilakukan untuk mengevaluasi dampak berbagai jenis campuran biodiesel terhadap ketahanan mesin, cara injeksi, emisi gas buang, kinerja, kerugian panas dan ketersediaan, pembentukan semprotan, analisis getaran mesin, sintesis katalis untuk produksi biodiesel,

e-ISSN: 3089-3704

dan emisi akustik [22] [23] menyatakan bahwa angka cetane yang lebih tinggi pada campuran biodiesel kelapa sawit merupakan alasan peningkatan daya rem dan mengakibatkan penundaan pembakaran yang lebih singkat, sehingga pembakaran dimulai lebih awal. Selain itu, angka cetane yang lebih tinggi diperlukan untuk kecepatan putaran mesin yang lebih tinggi. [24] membandingkan kinerja dua jenis biodiesel; yaitu, biodiesel mustard dan biodiesel kelapa sawit, dengan campuran volume 10% dan 20%. Hasil menunjukkan bahwa BSFC untuk biodiesel mustard 1% dan 3,5% lebih tinggi daripada campuran biodiesel kelapa sawit 10% dan 20%, masing-masing. [25] meneliti kinerja mesin diesel yang menggunakan campuran minyak kelapa sawit. Para penulis menemukan peningkatan kecil pada BSFC dan BTE dibandingkan dengan bahan bakar diesel murni. [26] menyarankan penggunaan bahan bakar biodiesel sebagai pengganti diesel murni dengan melakukan modifikasi pada mesin diesel, terutama pada filter bahan bakar, pompa bahan bakar, dan jarum injektor, untuk mengatasi viskositas yang lebih tinggi pada bahan bakar biodiesel dan meningkatkan kinerjanya.


Untuk menghindari kendala finansial dan eksperimen yang memakan waktu, para peneliti telah menggunakan teknik pemodelan berbeda, termasuk kecerdasan buatan (AI) dalam bentuk jaringan saraf tiruan (ANN) dan pemodelan fuzzy dalam memodelkan kinerja mesin dan emisi gas buang [27] Sesuai dengan itu, koefisien korelasi antara data eksperimental dan prediksi ANN dapat secara akurat memprediksi efisiensi mesin dan emisi gas buang yang menggunakan campuran biodiesel [28] Model fuzzy merupakan metode yang lebih unggul untuk memperkirakan parameter mesin diesel yang memaksimalkan kinerja mesin, dibandingkan dengan teknik lain seperti model kinetika reaksi dinamika fluida komputasional, karena memerlukan waktu dan usaha yang lebih sedikit [29] Di sisi lain, teknik komputasional untuk mempelajari mesin pembakaran dalam memiliki beberapa kelemahan. Untuk menghindari hal ini, [30] menginovasi cara alternatif dan non-tradisional untuk mengatasi tantangan redundansi empiris dalam operasi mesin dan karakterisasi perilaku. Studi ini menyediakan pendekatan empiris unik untuk menilai pentingnya relatif variabel yang dipilih, mengatasi keterbacaan operasi mesin. Selain itu, [31] memanfaatkan redundansi untuk menciptakan urutan variabel yang dipilih, tergantung pada pentingnya dalam operasi ICE. [32] menganalisis kinerja mesin pembakaran kompresi (CI) silinder tunggal yang menggunakan campuran bahan bakar minyak kelapa sawit/diesel dan biofuel etanol, menggunakan dua model ANN dan RSM. Hasil menunjukkan bahwa kinerja mesin yang dioptimalkan, dalam hal BTE dan BSFC, diperoleh dari campuran 20% biodiesel kelapa sawit, dicampur dengan 5% etanol dan 75% diesel murni pada beban penuh. [33] memaksimalkan respons kinerja mesin diesel dengan dua pendekatan (alat ANN dan RSM). Mesin tersebut ditenagai oleh campuran diesel/minyak nabati/dietil eter pada beban mesin yang berbeda, bersama dengan rasio kompresi yang bervariasi. Persentase kesalahan kedua pendekatan dinilai kurang dari 5%. Oleh karena itu, para penulis menyatakan bahwa penerapan pendekatan sebelumnya memainkan peran krusial dalam meningkatkan kinerja mesin. [34] dan [35] menggunakan teknik Taguchi berbasis fuzzy untuk meningkatkan kinerja mesin CI dan mengurangi karakteristik emisi pada mesin CI, dengan beban mesin yang bervariasi dan campuran biodiesel yang berbeda. [36] menggunakan teknik permukaan respons untuk menyelidiki efek campuran bahan bakar biodiesel-ethanol pada kinerja mesin CI. Optimasi parameter juga dilakukan menggunakan metode genetik. Berdasarkan temuan, peningkatan jumlah etanol dalam campuran bensin mengurangi BP dan BT sekitar 30%. Karena etanol memiliki nilai kalor yang lebih rendah daripada biodiesel, BSFC campuran bahan bakar meningkat sekitar 16% dengan proporsi etanol yang lebih besar. Untuk meminimalkan dan mengidentifikasi jumlah percobaan eksperimental yang tepat, pendekatan eksperimental Taguchi dapat digunakan [37] [38] menggunakan RSM dan fungsi yang diinginkan untuk mengoptimalkan mesin bahan bakar gas-diesel ganda, dengan beberapa tujuan. Tujuannya adalah menggunakan fungsi yang diinginkan untuk mengoptimalkan keingingan SFC dan emisi gas buang spesifik pada kecepatan mesin tinggi 3000 rpm. Kehandalan optimal sebesar 0,829 dicapai dengan parameter masukan 11° BTDC [39] meneliti bagaimana persentase nanopartikel alumina dalam campuran biodiesel memengaruhi emisi gas buang dan kinerja mesin CI. Selain itu, para penulis merancang korelasi empiris menggunakan RSM untuk mensimulasikan kinerja mesin diesel dan emisi gas buang yang menggunakan campuran bahan bakar nano biodiesel. Hasil eksperimen menunjukkan bahwa nanopartikel alumina merupakan penambahan yang berguna pada campuran diesel-biodiesel untuk meningkatkan kinerja mesin dan mengurangi emisi gas buang. Devarajan dkk. [40] meneliti kinerja mesin CI dengan menambahkan nanopartikel oksida perak sebagai aditif dalam berbagai fraksi

e-ISSN: 3089-3704

berat ke dalam biodiesel minyak kelapa sawit. Menurut hasil penelitian, penambahan nanopartikel ke dalam biodiesel meningkatkan perilaku pembakaran.

e-ISSN: 3089-3704

p-ISSN: xxxx-xxxx

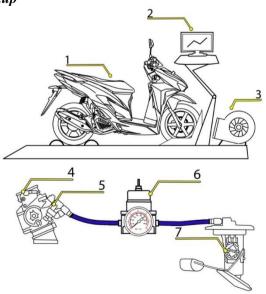
Gambar 1 Diagram Alir Penelitian

Alur kerja penelitian yang digambarkan dalam diagram yang disediakan mencerminkan pendekatan sistematis dalam menyelidiki dampak peningkatan tekanan pompa bahan bakar dan variasi lubang injektor terhadap kinerja mesin. Dimulai dengan tinjauan literatur yang komprehensif, studi ini membangun landasan teoretis yang kokoh dan mengidentifikasi celah dalam pengetahuan yang ada, yang mengarahkan formulasi pertanyaan penelitian. Langkah-langkah selanjutnya melibatkan pengadaan dan persiapan peralatan yang diperlukan, diikuti dengan pengujian ketat terhadap konfigurasi injektor yang berbeda pada tekanan bahan bakar yang bervariasi. Fase eksperimental ini sangat penting dalam menghasilkan data tentang daya dan torsi mesin, yang dievaluasi secara teliti untuk memastikan akurasi dan keandalan.

Setelah pengumpulan data, proses pengolahan dan analisis data dilakukan secara teliti, menggunakan metode statistik untuk mengekstrak wawasan dari hasil eksperimental. Analisis ini mengungkap pengaruh konfigurasi injektor dan tekanan bahan bakar terhadap kinerja mesin, memfasilitasi penarikan kesimpulan yang bermakna. Akhirnya, penelitian ini menyimpulkan temuan-temuan, memberikan kontribusi berharga terhadap pemahaman dinamika sistem bahan bakar dan strategi optimasi. Melalui pendekatan terstrukturnya, studi ini berkontribusi pada pengembangan pengetahuan dalam peningkatan kinerja mesin, menawarkan wawasan yang dapat menginformasikan penelitian masa depan dan aplikasi praktis dalam rekayasa otomotif.

3.1 Implementasi Penelitian

Penelitian ini dilakukan pada April 2023 di RAT Motorsport, Sidoarjo, Jawa Timur. Pemilihan waktu dan lokasi ini sangat penting karena menyediakan lingkungan terkontrol yang memungkinkan eksperimen dilakukan secara efektif, memastikan konsistensi dan keandalan data yang diperoleh. Peralatan dan bahan yang digunakan dalam proses penelitian memainkan peran penting dalam pelaksanaan eksperimen dan pengumpulan data yang akurat. Sepeda motor Honda Vario 150 cc digunakan sebagai subjek uji, dengan spesifikasi detailnya dijelaskan untuk memberikan kejelasan mengenai kemampuannya. Dynamometer, injektor, regulator tekanan bahan bakar, kotak alat, laptop, dan bahan bakar (RON 92) merupakan komponen esensial yang digunakan untuk mengukur kinerja


mesin, mengatur pengiriman bahan bakar, dan memfasilitasi pengolahan data. Fungsi setiap item sangat krusial bagi kesuksesan penelitian, menyoroti perencanaan dan pelaksanaan yang teliti dalam pengaturan eksperimen. Penambahan deskripsi dan gambar yang detail meningkatkan kejelasan dan kelengkapan metodologi penelitian, memastikan transparansi dan reproduktibilitas untuk studi masa depan di bidang ini.

Hipotesis penelitian mengemukakan potensi dampak perubahan konfigurasi lubang injektor dan tekanan pompa bahan bakar terhadap kinerja mesin motor otomatis 150cc. Hipotesis nol (Ho) menyarankan bahwa tidak ada pengaruh dari variasi konfigurasi lubang injektor dan perubahan tekanan pompa bahan bakar terhadap kinerja mesin. Sebaliknya, hipotesis alternatif (H1) mengusulkan bahwa ada efek yang timbul dari manipulasi konfigurasi lubang injektor dan tekanan pompa bahan bakar terhadap kinerja mesin. Hipotesis ini didasarkan pada pemahaman yang diberikan oleh peneliti sebelumnya mengenai dinamika kinerja mesin, yang menunjukkan penyimpangan dari keyakinan konvensional bahwa konfigurasi lubang injektor dan tekanan pompa bahan bakar merupakan variabel statis yang tidak memiliki pengaruh yang dapat dideteksi terhadap kinerja mesin. Oleh karena itu, hipotesis ini membuka jalan bagi eksperimen yang ketat dan analisis statistik untuk menerima atau menolak hipotesis nol demi mendukung hipotesis alternatif, sehingga berkontribusi pada kemajuan pemahaman faktor-faktor yang mempengaruhi kinerja mesin pada sepeda motor otomatis 150cc.

Variabel penelitian mencakup manipulasi konfigurasi injektor dan tekanan pompa bahan bakar bersama dengan pengendalian kecepatan mesin, yang berkontribusi pada analisis komprehensif kinerja mesin. Variabel independen meliputi penggantian injektor standar 6 lubang dengan injektor 3 dan 8 lubang, serta penyesuaian tekanan pompa bahan bakar dari standar 3 bar menjadi 2,5 bar dan 3,5 bar. Selain itu, kecepatan mesin, yang berkisar antara 3000 hingga 10000 rpm, berfungsi sebagai variabel independen lain, memungkinkan pemeriksaan kinerja di berbagai kondisi operasional. Variabel dependen terdiri dari metrik kinerja mesin, yaitu daya dan torsi, yang berfungsi sebagai indikator efektivitas mesin di bawah konfigurasi yang berbeda.

Selain itu, studi ini memasukkan variabel kontrol untuk menjaga konsistensi dan keandalan dalam pengaturan eksperimental. Penggunaan mesin dalam kondisi standar pabrik memastikan keseragaman antar uji, meminimalkan faktor-faktor pengganggu yang dapat memengaruhi hasil. Dengan mendefinisikan dan memanipulasi variabel-variabel ini secara teliti, penelitian ini bertujuan untuk mengungkap dampak konfigurasi injektor dan tekanan pompa bahan bakar terhadap kinerja mesin. Pendekatan terstruktur dalam pemilihan dan pengendalian variabel meningkatkan validitas dan keandalan temuan penelitian, memungkinkan wawasan yang berarti tentang optimasi kinerja mesin pada sepeda motor otomatis 150cc.

3.2 Research Equipment Setup

Gambar 2 Equipment Setting

e-ISSN: 3089-3704

Description:

- 1. Vario 150 Motorcycle
- 2. Dynamometer Monitor
- 3. Cooling Fan
- 4. Body Throttle
- Injector
- 6. FPR (Fuel Presure

Regulator)

7. Fuel Pump

Prosedur eksperimental yang dijelaskan di bawah ini memberikan pendekatan sistematis dalam melaksanakan penelitian, memastikan konsistensi dan akurasi dalam proses pengumpulan data.

- 1. Persiapan Peralatan dan Bahan: Langkah pertama melibatkan pengumpulan dan persiapan semua alat dan bahan yang diperlukan untuk eksperimen, termasuk injektor, regulator pompa bahan bakar, dinamometer, dan peralatan terkait lainnya.
- 2. Pemasangan Injektor: Setelah persiapan peralatan, injektor yang dipilih dengan 3, 6, atau 8 lubang dipasang ke dalam mesin untuk menggantikan injektor standar. Langkah ini sangat penting karena menetapkan variabel yang diteliti, yang memengaruhi pengiriman bahan bakar ke mesin.
- 3. Pemasangan Regulator Pompa Bahan Bakar: Regulator pompa bahan bakar kemudian dipasang di antara pompa bahan bakar dan injektor, memastikan pemasangan yang tepat untuk mengatur tekanan bahan bakar. Regulator tekanan dilepas untuk memungkinkan penyesuaian pada langkah berikutnya.
- 4. Penyesuaian Regulator Pompa Bahan Bakar: Mekanisme penyesuaian pada regulator pompa bahan bakar disetel untuk mencapai tekanan bahan bakar yang diinginkan sesuai dengan variabel yang ditentukan (2,5 bar, 3 bar, dan 3,5 bar). Langkah ini memastikan konsistensi tekanan bahan bakar di seluruh eksperimen.
- 5. Verifikasi Tekanan: Sebelum pengujian, tekanan regulator pompa bahan bakar diverifikasi untuk memastikan kesesuaian dengan variabel yang telah ditentukan. Langkah verifikasi ini penting untuk menjaga integritas kondisi eksperimen.
- 6. Pengujian Dynamometer: Langkah akhir melibatkan pengujian menggunakan dynamometer, mengikuti parameter kecepatan mesin yang telah ditentukan. Langkah ini memungkinkan pengukuran kinerja mesin, termasuk daya dan torsi, di bawah konfigurasi injektor dan tingkat tekanan bahan bakar yang bervariasi.

Pendekatan terstruktur yang dijelaskan dalam langkah-langkah eksperimental memastikan ketelitian metodologis dan memfasilitasi penyelidikan sistematis terhadap hipotesis penelitian. Setiap langkah dirancang dengan cermat untuk memanipulasi dan mengontrol variabel secara efektif, menghasilkan wawasan yang andal dan dapat ditindaklanjuti mengenai dampak konfigurasi injektor dan tekanan bahan bakar terhadap kinerja mesin.

3.3 Metode Pengambilan Data

Metodologi pengumpulan data yang dijelaskan dalam teks ini menggambarkan pendekatan sistematis untuk menyelidiki dampak penggantian injektor dan penyesuaian tekanan pompa bahan bakar terhadap kinerja kendaraan. Prosedur ini dimulai dengan persiapan uji dan pengaturan peralatan, dan mencakup langkah-langkah spesifik seperti pemasangan injektor dan pompa bahan bakar, pengujian di dyno, dan pengumpulan data. Setiap langkah dilaksanakan dengan teliti untuk memastikan akurasi dan keandalan hasil yang diperoleh. Dengan mengikuti metodologi terstruktur ini, studi ini bertujuan untuk memberikan wawasan komprehensif tentang hubungan antara konfigurasi injektor, tekanan pompa bahan bakar, dan kinerja mesin, yang pada akhirnya berkontribusi pada kemajuan dalam rekayasa otomotif dan optimasi sistem bahan bakar.

e-ISSN: 3089-3704

3.4 Metode Pengolahan Data

Metode pengolahan dan analisis data yang dijelaskan dalam teks ini menyediakan kerangka kerja terstruktur untuk menganalisis pengaruh konfigurasi lubang injektor dan tekanan pompa bahan bakar terhadap kinerja sepeda motor. Awalnya, hasil uji coba disusun secara sistematis ke dalam tabel pengumpulan data, memudahkan pengorganisasian dan referensi. Selanjutnya, data dianalisis menggunakan metode analisis variansi dua faktor (ANOVA) dengan replikasi n, memungkinkan identifikasi perbedaan signifikan antara kelompok perlakuan dengan menggunakan perangkat lunak SPSS. Proses ini memungkinkan evaluasi yang lebih mendalam terhadap efek gabungan variabel independen terhadap variabel dependen. Selain itu, data yang diolah kemudian disajikan dalam grafik perbandingan dan format deskriptif menggunakan Excel, membantu dalam interpretasi dan visualisasi hasil analisis. Pendekatan terstruktur ini memudahkan pemahaman dampak variabel independen terhadap kinerja sepeda motor, memberikan landasan yang kokoh untuk menarik kesimpulan penelitian yang lebih akurat.

HASIL DAN PEMBAHASAN 4.1 ANALISIS STATISTIK

Tabel 1. ANOVA Test of Power

Tests of Between-Subjects Effects

Dependent Variable:	Power Test	, -			
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	1975.0962	71	27.818	173.838	.000
Intercept	19321.294	1	19321.294	120740.271	.000
Pressure	.401	2	.200	1.253	.289
Rpm	1932.147	7	276.021	1724.877	.000
Injector	9.637	2	4.818	30.110	.000
Pressure * rpm	10.108	14	.722	4.512	.000
Pressure * injector	.398	4	.100	.622	.648
rpm * injector	14.749	14	1.053	6.583	.000
Pressure * rpm * injector	7.657	28	.273	1.709	.023
Error	23.043	144	.160		
Tota1	21319.434	216			
Corrected Total	1998.140	215			

a. R Squared = .988 (Adjusted R Squared = .983)

Analisis statistik yang dilakukan menggunakan ANOVA Dua Faktor menunjukkan wawasan yang signifikan mengenai hubungan antara variabel independen dan variabel dependen, yaitu daya. Hasil ANOVA, seperti yang ditampilkan dalam Tabel 4.4, menunjukkan beberapa temuan kunci. Pertama, analisis menunjukkan bahwa tekanan saja tidak memiliki dampak yang signifikan terhadap daya, sebagaimana dibuktikan oleh nilai p yang tidak signifikan (p = 0.289). Oleh karena itu, hipotesis nol (H0) bahwa tekanan tidak secara signifikan mempengaruhi daya diterima. Sebaliknya, analisis menyoroti pengaruh signifikan jenis injektor terhadap daya, sebagaimana ditunjukkan oleh nilai p sebesar 0.00, mendukung penerimaan hipotesis alternatif (H1) bahwa jenis injektor secara signifikan mempengaruhi daya. Namun, interaksi antara tekanan dan jenis injektor ditemukan tidak signifikan, karena nilai p melebihi ambang batas (p = 0.648), sehingga hipotesis nol (H0) diterima, menunjukkan tidak adanya efek gabungan yang signifikan antara tekanan dan jenis injektor terhadap daya. Temuan ini memberikan wawasan berharga tentang faktor-faktor yang mempengaruhi output daya pada kendaraan yang diteliti, menyoroti pentingnya jenis injektor dalam menentukan kinerja mesin.

e-ISSN: 3089-3704

Tabel 2. ANOVA Test of Torque
Tests of Between-Subjects Effects

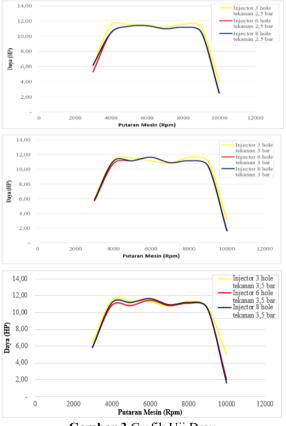
Dependent Variable:	Torque Test				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	34606.289ª	71	487.413	837.381	.000
Intercept	95457.286	1	95457.286	163996.779	.000
Pressure	.726	2	.363	.624	.537
Rpm	34437.241	7	4919.606	8451.943	.000
Injector	53.400	2	26.700	45.871	.000
Pressure * rpm	21.614	14	1.544	2.652	.002
Pressure * injector	2.000	4	.500	.859	.490
rpm * injector	67.913	14	4.851	8.334	.000
Pressure * rpm * injector	23.395	28	.836	1.435	.089
Error	83.818	144	.582		
Total	130147.393	216			
Corrected Total	34690.107	215			

a. R Squared = .998 (Adjusted R Squared = .996)

Analisis statistik menggunakan ANOVA Dua Faktor pada torsi memberikan wawasan berharga tentang hubungan antara variabel independen dan variabel dependen, yaitu torsi. Seperti yang ditunjukkan dalam Tabel 4.5, hasil analisis mengungkapkan beberapa temuan yang signifikan. Pertama, analisis menunjukkan bahwa tekanan saja tidak secara signifikan mempengaruhi torsi, sebagaimana dibuktikan oleh nilai p yang tidak signifikan (p = 0.537), sehingga hipotesis nol (H0) bahwa tekanan tidak memiliki dampak signifikan pada torsi diterima. Sebaliknya, analisis menyoroti pengaruh signifikan jenis injektor terhadap torsi, didukung oleh nilai p sebesar 0.00, sehingga menerima hipotesis alternatif (H1) bahwa jenis injektor secara signifikan mempengaruhi torsi. Namun, interaksi antara tekanan dan jenis injektor ditemukan tidak signifikan, sebagaimana ditunjukkan oleh nilai p yang lebih besar dari ambang batas (p = 0.490), sehingga hipotesis nol (H0) diterima, menyarankan tidak adanya efek gabungan yang signifikan antara tekanan dan jenis injektor terhadap torsi. Temuan ini memberikan wawasan berharga tentang faktor-faktor yang mempengaruhi output torsi pada kendaraan yang diteliti, khususnya menyoroti peran kritis jenis injektor dalam menentukan kinerja mesin.

4.2 Uji Daya

4.2.1 Jumlah Lubang Injektor Terhadap Daya


Tabel 3. Hasil Uji Daya Rata-Rata

	PO	WER TEST (HP)		
Engine Turns (Rpm)	Fuel Pump Pressure (bar)	3 hole injector	6 hole injector	8 hole injector
	2.5	6.13	5.30	6.17
	3	6.10	5.70	5.83
3000	3.5	6.30	5.83	6.20
	2.5	11.47	10.47	10.47
	3	11.23	10.77	11.10
4000	3.5	11.37	10.82	10.83
	2.5	11.50	11.30	11.30
	3	11.53	11.17	11.17
5000	3.5	11.37	10.82	10.90
	2.5	11.47	11.37	11.37
	3	11.13	11.63	11.63
6000	3.5	11.30	11.47	11.10
	2.5	11.13	10.97	10.97
	3	10.87	10.90	10.90
7000	3.5	10.73	10.83	10.93
	2.5	11.57	11.17	11.17
	3	11.60	11.17	11.17
8000	3.5	11.30	11.10	10.77
	2.5	11.17	10.53	10.53
	3	11.07	10.47	10.47
9000	3.5	10.60	10.50	10.50
	2.5	3.97	2.50	2.50
	3	3.13	1.63	1.63
10000	3.5	4.97	2.03	2.03

Analisis jumlah lubang injektor terkait dengan output daya memberikan wawasan berharga mengenai variasi kinerja yang diamati pada tekanan pompa bahan bakar yang berbeda. Representasi grafis yang menyertai Tabel 3 memberikan visualisasi yang lebih jelas mengenai tren data. Dalam uji coba yang dilakukan pada tekanan pompa bahan bakar 2,5 bar, grafik menunjukkan bahwa injektor dengan 3 lubang menghasilkan output daya tertinggi sebesar 11,57 HP pada 8.000 rpm, sementara injektor dengan

e-ISSN: 3089-3704

6 dan 8 lubang mencapai output daya puncak sebesar 11,37 HP pada 6.000 rpm. Pada uji coba dengan tekanan pompa bahan bakar 3 bar, injektor dengan lebih banyak lubang, khususnya 6 dan 8 lubang, outperformed injektor dengan 3 lubang, mencapai output daya maksimum 11,63 HP pada 6000 rpm. Namun, pada tekanan pompa bahan bakar 3,5 bar, injektor dengan 6 lubang menghasilkan daya maksimum tertinggi sebesar 11,47 HP, dengan injektor berlubang 3 mencapai 11,37 HP pada 5000 rpm dan injektor berlubang 8 mencapai daya maksimumnya sebesar 11,10 HP pada 6000 rpm. Representasi grafis ini memperjelas variasi output daya yang dipengaruhi oleh konfigurasi lubang injektor pada tekanan pompa bahan bakar yang berbeda, memberikan wawasan penting untuk mengoptimalkan kinerja mesin dalam berbagai kondisi operasi. Dari tabel, dapat diamati bahwa nilai HP cenderung meningkat seiring dengan peningkatan putaran mesin (Engine Turns) untuk setiap jenis injektor. Hal ini menunjukkan korelasi positif antara putaran mesin dan HP. Selain itu, untuk setiap nilai putaran mesin, output daya tertinggi dicapai oleh iniektor 3 lubang, diikuti oleh iniektor 8 lubang, dan terakhir iniektor 6 lubang. Hal ini menunjukkan bahwa injektor 3 lubang memiliki kinerja terbaik dalam menghasilkan daya, sementara injektor 6 lubang memiliki kinerja terburuk. Selain itu, untuk setiap jenis injektor, nilai HP cenderung meningkat seiring dengan peningkatan tekanan pompa bahan bakar, meskipun tidak signifikan. Hal ini menunjukkan bahwa tekanan pompa bahan bakar memiliki pengaruh yang kecil terhadap HP. Analisis ini didasarkan pada data yang terdapat dalam tabel dan memberikan pemahaman yang lebih mendalam tentang bagaimana variasi parameter memengaruhi kinerja mesin kendaraan.

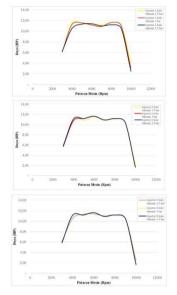
Gambar 3 Grafik Uji Daya

Analisis grafik mengungkapkan pola yang menarik mengenai hubungan antara parameter mesin dan output daya kuda (HP). Pertama, terlihat bahwa HP cenderung meningkat secara proporsional seiring dengan peningkatan RPM pada semua tingkat tekanan, menunjukkan korelasi positif antara kecepatan mesin dan output daya. Selain itu, perbandingan HP pada tingkat tekanan pompa bahan bakar yang berbeda menyoroti pentingnya tekanan dalam mengoptimalkan kinerja mesin, dengan tekanan yang lebih tinggi secara konsisten menghasilkan nilai HP yang lebih tinggi. Selain itu, grafik menunjukkan rentang RPM optimal, biasanya sekitar 6000 RPM, di mana HP mencapai puncaknya sebelum menurun tajam dengan peningkatan kecepatan mesin lebih lanjut. Temuan ini menekankan pentingnya menjaga

e-ISSN: 3089-3704

RPM dalam rentang ini untuk memaksimalkan output daya secara efisien sambil menghindari beban berlebih pada mesin. Secara keseluruhan, analisis ini menyoroti interaksi kompleks antara RPM, tekanan pompa bahan bakar, dan HP, memberikan wawasan berharga untuk mengoptimalkan kinerja mesin dalam berbagai kondisi operasi. Dari ketiga grafik, terlihat bahwa laju aliran massa (Mf) bahan bakar meningkat seiring dengan kecepatan mesin (RPM) hingga mencapai puncak tertentu, lalu menurun. Hal ini menunjukkan hubungan antara kecepatan mesin dan konsumsi bahan bakar. Selain itu, tekanan injektor mempengaruhi nilai Mf pada setiap kecepatan mesin. Tekanan injektor yang lebih tinggi menghasilkan nilai Mf yang lebih tinggi pada kecepatan mesin yang sama, menunjukkan korelasi antara tekanan injektor dan laju aliran bahan bakar. Selain itu, jumlah lubang injektor memengaruhi nilai Dp/Np (dosis per nozzle per pulsa) pada setiap kecepatan mesin. Semakin banyak lubang injektor, semakin rendah nilai Dp/Np pada kecepatan mesin yang sama, menunjukkan hubungan antara jumlah lubang injektor dan dosis bahan bakar per nozzle per pulsa. Perbandingan Kinerja Injektor: Perbandingan antara tiga jenis injektor menunjukkan bahwa injektor 12 lubang memiliki nilai Mf tertinggi pada semua tekanan injektor, diikuti oleh injektor 6 lubang dan injektor 3 lubang. Hal ini menunjukkan bahwa injektor 12 lubang lebih efisien dalam menyalurkan bahan bakar ke mesin dibandingkan dengan jenis lainnya. Selain itu, injektor 3 lubang menunjukkan nilai Dp/Np tertinggi pada semua kecepatan mesin, diikuti oleh injektor 6 lubang dan injektor 12 lubang, menunjukkan bahwa injektor 3 lubang kurang efisien dalam pengiriman bahan bakar per nozzle per pulsa dibandingkan dengan jenis lainnya. Dari pembahasan di atas, dapat disimpulkan bahwa injektor 12 lubang menunjukkan kinerja dan efisiensi yang lebih baik dibandingkan dengan injektor 6 lubang dan injektor 3 lubang. Injektor 12 lubang dapat menyalurkan laju aliran bahan bakar yang tinggi dengan dosis bahan bakar per nozzle per pulsa yang rendah, sehingga meningkatkan kinerja mesin dan mengurangi konsumsi bahan bakar. Selain itu, meskipun tekanan injektor memengaruhi laju aliran bahan bakar, hal ini tidak memengaruhi dosis bahan bakar per nozzle per pulsa. Oleh karena itu, tekanan injektor dapat disesuaikan sesuai kebutuhan mesin untuk mencapai kinerja dan efisiensi optimal.

4.2.2 Tekanan Pompa Bahan Bakar Terhadap Daya


Tabel 4 Hasil Uji Daya Rata-Rata

	PO	WER TEST (HP)		
Engine Turns (Rpm)	Fuel Pump Pressure (bar)	3 hole injector	6 hole injector	8 hole injector
	2.5	6.13	5.30	6.17
	3	6.10	5.70	5.83
3000	3.5	6.30	5.83	6.20
	2.5	11.47	10.47	10.47
	3	11.23	10.77	11.10
4000	3.5	11.37	10.82	10.83
	2.5	11.50	11.30	11.30
	3	11.53	11.17	11.17
5000	3.5	11.37	10.82	10.90
	2.5	11.47	11.37	11.37
	3	11.13	11.63	11.63
6000	3.5	11.30	11.47	11.10
	2.5	11.13	10.97	10.97
	3	10.87	10.90	10.90
7000	3.5	10.73	10.83	10.93
	2.5	11.57	11.17	11.17
	3	11.60	11.17	11.17
8000	3.5	11.30	11.10	10.77
	2.5	11.17	10.53	10.53
	3	11.07	10.47	10.47
9000	3.5	10.60	10.50	10.50
	2.5	3.97	2.50	2.50
	3	3.13	1.63	1.63
10000	3.5	4.97	2.03	2.03

Analisis yang disediakan dari tabel uji daya memberikan wawasan berharga tentang kinerja mesin dalam berbagai kondisi operasional. Secara khusus, variasi kecepatan mesin, tekanan pompa bahan bakar, dan jenis injektor memberikan gambaran komprehensif tentang bagaimana faktor-faktor ini memengaruhi output daya mesin. Data menunjukkan bahwa, terlepas dari tekanan pompa bahan bakar, injektor dengan lebih banyak lubang cenderung menghasilkan daya mesin yang lebih tinggi. Pengamatan ini menunjukkan bahwa desain dan konfigurasi injektor secara signifikan memengaruhi atomisasi dan distribusi bahan bakar, yang pada akhirnya memengaruhi efisiensi pembakaran dan pembangkitan daya.

e-ISSN: 3089-3704

Selain itu, analisis menyoroti hubungan kompleks antara kecepatan mesin dan output daya. Meskipun peningkatan kecepatan mesin umumnya menghasilkan daya kuda yang lebih tinggi, efeknya dapat bervariasi tergantung pada kombinasi spesifik tekanan pompa bahan bakar dan jenis injektor. Pemahaman yang mendalam ini menekankan pentingnya mengoptimalkan parameter-parameter ini untuk mencapai hasil kinerja yang diinginkan dalam operasi mesin. Selain itu, kinerja unggul yang konsisten dari injektor 8 lubang pada berbagai tekanan pompa bahan bakar dan kecepatan mesin menyoroti keefektifannya dalam menghasilkan daya mesin maksimum di bawah berbagai kondisi operasi.

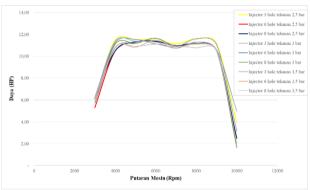
Gambar 4. Fuel Pump Pressure Graphic

Beralih ke analisis grafis, setiap grafik memberikan pemahaman tambahan mengenai hubungan antara torsi, kecepatan mesin, dan jenis injektor. Misalnya, perbandingan torsi terhadap kecepatan mesin untuk berbagai jenis injektor pada tekanan pompa bahan bakar tertentu pada Grafik 1 menjelaskan kesamaan dan perbedaan kinerja di antara desain injektor. Demikian pula, Grafik 2 dan 3 menjelaskan bagaimana perubahan tekanan pompa bahan bakar dapat memengaruhi output torsi berbagai jenis injektor, menyoroti pentingnya pemilihan injektor dalam mengoptimalkan kinerja mesin. Secara keseluruhan, analisis ini berkontribusi pada pemahaman komprehensif tentang faktor-faktor yang memengaruhi daya mesin dan memberikan wawasan berharga untuk upaya optimasi dan peningkatan kinerja mesin.

4.2.3 Tekanan Pompa Bahan Bakar dan Lubang Injektor pada Mesin

Analisis daya yang tertera pada tabel memberikan wawasan berharga tentang data eksperimental yang dikumpulkan, dengan fokus pada output daya kuda berdasarkan variasi putaran mesin, tekanan pompa bahan bakar, dan jenis injektor. Dengan menganalisis data tersebut, terlihat jelas bahwa kinerja injektor bervariasi secara signifikan tergantung pada kondisi operasional ini. Secara spesifik, pada tekanan pompa bahan bakar yang lebih rendah (2,5 bar), semua jenis injektor cenderung menghasilkan output daya kuda yang lebih tinggi dibandingkan dengan tekanan 3 atau 3,5 bar. Pengamatan ini menyarankan bahwa tekanan pompa bahan bakar yang lebih rendah mungkin memfasilitasi atomisasi bahan bakar yang lebih baik dan efisiensi pembakaran, yang pada gilirannya meningkatkan kinerja mesin.

Selain itu, analisis menyoroti kinerja yang konsisten dari injektor 8 lubang di seluruh rentang putaran mesin dibandingkan dengan jenis injektor lainnya. Konsistensi ini mungkin disebabkan oleh distribusi bahan bakar yang lebih merata yang dihasilkan oleh jumlah lubang yang lebih banyak pada injektor, yang menghasilkan pembakaran yang lebih efisien. Namun, terdapat penurunan yang signifikan dalam output tenaga kuda pada putaran mesin tinggi (9000-10000 Rpm) untuk semua jenis injektor. Penurunan kinerja pada putaran mesin tinggi ini mungkin menunjukkan efisiensi pembakaran yang berkurang atau faktor mekanis lain yang memengaruhi operasi mesin.


Kesimpulannya, mengoptimalkan kombinasi tekanan pompa bahan bakar dan jenis injektor sangat

e-ISSN: 3089-3704

penting untuk mencapai kinerja maksimal dalam berbagai kondisi operasional. Temuan ini menyoroti pentingnya mempertimbangkan faktor-faktor ini dalam proses penyetelan dan desain mesin untuk meningkatkan efisiensi dan kinerja secara keseluruhan. Selain itu, penyelidikan lebih lanjut tentang mekanisme spesifik di balik tren yang diamati, seperti dinamika pembakaran dan desain injektor, dapat memberikan wawasan berharga untuk penelitian dan pengembangan teknologi mesin di masa depan.

	PÓ	WER TEST (HP)		
Engine Turns (Rpm)	Fuel Pump Pressure (bar)	3 hole injector	6 hole injector	8 hole injector
	2.5	6.13	5.30	6.17
	3	6.10	5.70	5.83
3000	3.5	6.30	5.83	6.20
	2.5	11.47	10.47	10.47
	3	11.23	10.77	11.10
4000	3.5	11.37	10.82	10.83
	2.5	11.50	11.30	11.30
	3	11.53	11.17	11.17
5000	3.5	11.37	10.82	10.90
	2.5	11.47	11.37	11.37
	3	11.13	11.63	11.63
6000	3.5	11.30	11.47	11.10
	2.5	11.13	10.97	10.97
	3	10.87	10.90	10.90
7000	3.5	10.73	10.83	10.93
	2.5	11.57	11.17	11.17
	3	11.60	11.17	11.17
8000	3.5	11.30	11.10	10.77
	2.5	11.17	10.53	10.53
	3	11.07	10.47	10.47
9000	3.5	10.60	10.50	10.50
	2.5	3.97	2.50	2.50
	3	3.13	1.63	1.63
10000	3.5	4.97	2.03	2.03

Tabel 5. Hasil Uji Daya Rata-Rata

Gambar 5. Grafik Uji Tekanan Pompa Bahan Bakar dan Lubang Injektor

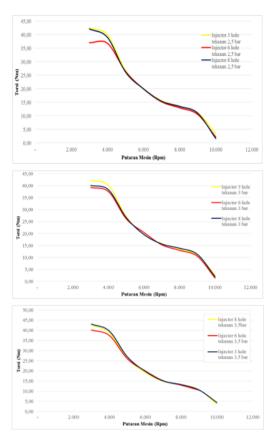
Analisis dan pembahasan yang disajikan didasarkan pada grafik yang disediakan, yang membandingkan kinerja tiga jenis injektor (3-lubang, 6-lubang, dan 8-lubang) pada tekanan bahan bakar 2,5 bar, 3 bar, dan 3,5 bar di berbagai kecepatan mesin (Rpm). Awalnya, pada kecepatan mesin rendah (0-2000 Rpm), semua jenis injektor menunjukkan kinerja yang hampir identik dengan daya sekitar 12 HP. Namun, seiring peningkatan kecepatan mesin (2000-6000 Rpm), terdapat penurunan daya yang signifikan pada semua jenis injektor, meskipun dengan laju yang berbeda. Injektor dengan tekanan lebih tinggi cenderung mempertahankan daya dengan lebih baik dibandingkan dengan tekanan yang lebih rendah. Secara mencolok, injektor 8-lubang pada tekanan 3,5 bar menunjukkan kinerja terbaik dalam mempertahankan daya di seluruh rentang kecepatan mesin.

Setelah mencapai puncaknya sekitar 6000 Rpm, semua kurva mulai menurun lagi hingga mencapai sekitar 2 HP pada kecepatan mesin sekitar 12000 Rpm. Penurunan kinerja pada kecepatan mesin tinggi ini mungkin disebabkan oleh efisiensi pembakaran yang berkurang atau faktor mekanis lainnya. Hal ini menyoroti pentingnya mengoptimalkan kombinasi tekanan pompa bahan bakar dan jenis injektor untuk mencapai kinerja maksimal dalam berbagai kondisi operasional. Secara keseluruhan, kinerja konsisten injektor 8 lubang menunjukkan distribusi bahan bakar yang lebih merata, yang mengarah pada pembakaran yang efisien. Penelitian lebih lanjut tentang dinamika pembakaran dan desain injektor dapat

e-ISSN: 3089-3704

memberikan wawasan berharga untuk mengoptimalkan kinerja mesin pada kondisi kecepatan tinggi.

4.3 Data Uji Torsi


4.3.1 Jumlah Lubang Injektor Terhadap Torsi

Tabel 6. Average Torque Test Results

POWER TEST (HP)					
Engine Turns (Rpm)	Fuel Pump Pressure (bar)	3 hole injector	6 hole injector	8 hole injector	
	2.5	42.50	37.07	42.17	
	3	42.14	39.25	40.10	
3000	3.5	43.10	40.20	42.56	
	2.5	39.99	36.85	39.02	
	3	40.12	37.49	38.29	
4000	3.5	39.67	37.48	38.80	
	2.5	26.91	26.52	26.25	
	3	27.07	26.14	26.68	
5000	3.5	27.02	26.03	26.19	
	2.5	20.08	19.96	20.02	
Ī	3	19.50	20.43	19.59	
6000	3.5	19.82	20.05	19.20	
	2.5	15.66	15.24	15.45	
	3	15.84	15.31	15.64	
7000	3.5	15.06	15.19	14.86	
	2.5	13.55	13.01	13.53	
	3	13.57	13.05	13.88	
8000	3.5	13.28	12.99	13.25	
	2.5	11.22	10.56	11.04	
	3	11.06	10.52	11.34	
9000	3.5	10.64	10.53	10.76	
	2.5	3.50	2.21	1.67	
	3	2.76	1.41	2.01	
10000	3.5	4.39	1.78	3.66	

Analisis ini menguraikan tiga faktor kritis yang memengaruhi kinerja mesin: tekanan pompa bahan bakar, konfigurasi lubang injektor, dan kecepatan mesin. Analisis menyarankan bahwa meskipun peningkatan tekanan pompa bahan bakar umumnya meningkatkan tenaga kuda, terutama pada RPM rendah, dampaknya berkurang pada kecepatan mesin yang lebih tinggi. Selain itu, injektor dengan lebih banyak lubang, terutama yang memiliki 8 lubang, cenderung memberikan kinerja yang lebih baik, meskipun injektor dengan 3 lubang juga menunjukkan output tenaga kuda yang kompetitif, terutama pada tekanan pompa bahan bakar yang lebih tinggi. Selain itu, analisis menunjukkan bahwa kecepatan mesin memainkan peran penting dalam pembangkitan tenaga kuda, dengan peningkatan signifikan teramati pada RPM rendah hingga sedang, berbanding terbalik dengan tenaga kuda yang stabil atau sedikit berkurang pada RPM tinggi. Kesimpulannya, temuan ini menekankan pentingnya memilih konfigurasi injektor dan tekanan pompa bahan bakar yang sesuai dengan kondisi operasional spesifik untuk mengoptimalkan kinerja mesin secara efektif.

e-ISSN: 3089-3704

Gambar 6. Grafik Uji Tekanan Pompa Bahan Bakar

Analisis grafik pertama menunjukkan penurunan yang konsisten pada torsi seiring dengan peningkatan putaran mesin per menit (RPM) untuk kedua jenis injektor pada dua tingkat tekanan yang berbeda. Meskipun injektor 3-lubang menunjukkan torsi yang sedikit lebih tinggi pada RPM rendah, perbedaan ini berkurang seiring dengan peningkatan RPM. Selain itu, tekanan tampaknya memiliki dampak minimal pada kinerja injektor 3-lubang, tetapi sedikit meningkatkan torsi pada injektor 6-lubang.

Pada grafik kedua, tren serupa terus berlanjut, dengan torsi menurun seiring peningkatan RPM. Perbedaan torsi antara kedua jenis injektor lebih jelas pada RPM rendah, dengan injektor 3 lubang menunjukkan torsi awal yang lebih tinggi. Sekali lagi, tekanan tampaknya hanya memberikan peningkatan kinerja yang marginal untuk injektor 6 lubang.

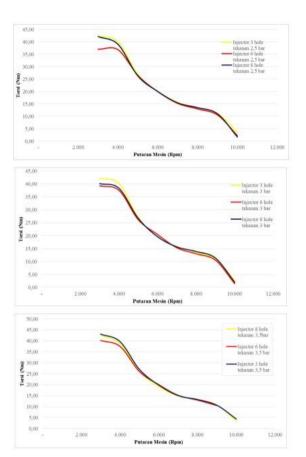
Analisis grafik ketiga mengonfirmasi tren konsisten yang diamati sebelumnya, dengan perbedaan awal torsi yang lebih mencolok antara kedua jenis injektor. Tekanan terus memiliki dampak minimal pada injektor 3 lubang sementara meningkatkan kinerja injektor 6 lubang. Secara keseluruhan, temuan ini menyarankan bahwa meskipun injektor 3 lubang mungkin menawarkan torsi awal yang lebih tinggi, ia juga mungkin menunjukkan stabilitas yang lebih besar terhadap fluktuasi tekanan dibandingkan dengan injektor 6 lubang, yang dapat menjadi kunci dalam mengoptimalkan pengaturan mesin untuk kinerja puncak di berbagai kondisi operasional.

e-ISSN: 3089-3704

4.3.2 Tekanan Pompa Bahan Bakar Terhadap Torsi

Tabel 7 Hasil Uji Torsi Rata-Rata

	PO	WER TEST (HP)		
Engine Turns (Rpm)	Fuel Pump Pressure (bar)	3 hole injector	6 hole injector	8 hole injector
	2.5	42.50	37.07	42.17
	3	42.14	39.25	40.10
3000	3.5	43.10	40.20	42.56
	2.5	39.99	36.85	39.02
	3	40.12	37.49	38.29
4000	3.5	39.67	37.48	38.80
	2.5	26.91	26.52	26.25
	3	27.07	26.14	26.68
5000	3.5	27.02	26.03	26.19
-	2.5	20.08	19.96	20.02
	3	19.50	20.43	19.59
6000	3.5	19.82	20.05	19.20
	2.5	15.66	15.24	15.45
	3	15.84	15.31	15.64
7000	3.5	15.06	15.19	14.86
	2.5	13.55	13.01	13.53
	3	13.57	13.05	13.88
8000	3.5	13.28	12.99	13.25
	2.5	11.22	10.56	11.04
	3	11.06	10.52	11.34
9000	3.5	10.64	10.53	10.76
	2.5	3.50	2.21	1.67
	3	2.76	1.41	2.01
10000	3.5	4.39	1.78	3.66


Analisis tabel mengungkapkan beberapa wawasan penting mengenai kinerja mesin dalam berbagai kondisi. Pada awalnya, pada 3000 RPM dan tekanan pompa bahan bakar 2,5 bar, injektor 3 lubang menunjukkan kinerja tertinggi dengan 42,50 HP dibandingkan dengan injektor 6 lubang dan 8 lubang. Namun, seiring meningkatnya RPM mesin, terdapat penurunan daya secara keseluruhan pada semua jenis injektor dan tekanan pompa bahan bakar. Menariknya, injektor 3 lubang cenderung menghasilkan daya output yang lebih tinggi pada rentang RPM rendah hingga sedang dibandingkan dengan injektor lainnya. Namun, pada RPM tinggi (9000-10000), tidak terdapat perbedaan signifikan dalam daya output antara jenis injektor. Pilihan jumlah lubang injektor dapat secara signifikan mempengaruhi kinerja mesin dalam kondisi operasional tertentu. Injektor 3 lubang mungkin lebih cocok untuk situasi di mana torsi awal dan RPM rendah menjadi faktor kritis. Namun, penting untuk mempertimbangkan baik tekanan pompa bahan bakar maupun persyaratan kinerja keseluruhan saat memilih jenis injektor yang tepat. Analisis ini menekankan pentingnya mengoptimalkan pemilihan injektor untuk mencapai kinerja mesin yang diinginkan di berbagai kondisi operasional.

Analisis grafik pertama menunjukkan bahwa injektor 3 lubang pada tekanan 2,5 Bar menghasilkan torsi tertinggi pada kecepatan mesin rendah hingga sedang, tetapi mengalami penurunan torsi seiring peningkatan kecepatan mesin. Hal ini menyarankan bahwa injektor 3 lubang lebih cocok untuk digunakan pada kecepatan mesin rendah di mana torsi awal sangat penting. Grafik tersebut juga menunjukkan bahwa injektor 6 Lubang berperforma serupa dengan injektor 3 Lubang, meskipun dengan torsi yang sedikit lebih rendah, dengan karakteristik serupa di seluruh rentang kecepatan mesin.

Pada grafik kedua, peningkatan tekanan menjadi 3 Bar meningkatkan kinerja kedua injektor, dengan injektor 3 Lubang menunjukkan peningkatan torsi yang signifikan pada kecepatan mesin rendah hingga sedang. Namun, penurunan torsi pada kecepatan mesin tinggi tetap terjadi pada kedua jenis injektor. Grafik ini mengonfirmasi bahwa tekanan yang lebih tinggi dapat mengoptimalkan kinerja injektor, terutama pada kecepatan mesin rendah hingga sedang.

Terakhir, pada grafik ketiga, terlihat bahwa meningkatkan tekanan menjadi 3,5 Bar untuk injektor 6 Lubang tidak menghasilkan peningkatan torsi yang signifikan dibandingkan dengan tekanan sebelumnya. Hal ini menunjukkan bahwa meningkatkan tekanan melebihi 3 Bar mungkin tidak memberikan manfaat signifikan dalam hal kinerja, terutama untuk jenis injektor tertentu. Secara keseluruhan, pemilihan jenis injektor dan tekanan yang tepat harus mempertimbangkan rentang kecepatan mesin yang diinginkan dan karakteristik torsi, yang esensial untuk pengembangan sistem bahan bakar yang optimal.

e-ISSN: 3089-3704

Gambar 7 Grafik Uji Tekanan dan Torsi Pompa Bahan Bakar


4.3.3 Tekanan Pompa Bahan Bakar dan Lubang Injektor pada Torsi Tabel 8 Hasil Uji Torsi Rata-Rata

	PO	WER TEST (HP)		
Engine Turns (Rpm)	Fuel Pump Pressure (bar)	3 hole injector	6 hole injector	8 hole injector
	2.5	42.50	37.07	42.17
	3	42.14	39.25	40.10
3000	3.5	43.10	40.20	42.56
	2.5	39.99	36.85	39.02
	3	40.12	37.49	38.29
4000	3.5	39.67	37.48	38.80
	2.5	26.91	26.52	26.25
	3	27.07	26.14	26.68
5000	3.5	27.02	26.03	26.19
	2.5	20.08	19.96	20.02
	3	19.50	20.43	19.59
6000	3.5	19.82	20.05	19.20
	2.5	15.66	15.24	15.45
	3	15.84	15.31	15.64
7000	3.5	15.06	15.19	14.86
	2.5	13.55	13.01	13.53
	3	13.57	13.05	13.88
8000	3.5	13.28	12.99	13.25
	2.5	11.22	10.56	11.04
	3	11.06	10.52	11.34
9000	3.5	10.64	10.53	10.76
	2.5	3.50	2.21	1.67
	3	2.76	1.41	2.01
10000	3.5	4.39	1.78	3.66

Analisis menunjukkan tren yang jelas tentang penurunan daya seiring dengan peningkatan kecepatan mesin pada semua jenis injektor, dengan injektor 8 lubang menunjukkan penurunan yang paling signifikan. Sebaliknya, tekanan pompa bahan bakar yang lebih tinggi, terutama pada 3,5 bar, secara konsisten menghasilkan output daya yang lebih tinggi dibandingkan dengan tekanan yang lebih rendah, menunjukkan pentingnya tekanan bahan bakar dalam mengoptimalkan kinerja injektor. Selain itu, meskipun injektor 3 lubang menunjukkan kinerja superior pada kecepatan mesin rendah hingga sedang, injektor 6 dan 8 lubang menunjukkan karakteristik serupa, terutama pada kecepatan rendah, menyoroti

e-ISSN: 3089-3704

hubungan yang kompleks antara desain injektor dan kinerja mesin pada kondisi operasi yang berbeda. Secara keseluruhan, temuan ini menyoroti peran kritis tekanan pompa bahan bakar dan pemilihan jenis injektor dalam memaksimalkan kinerja mesin pada berbagai kecepatan mesin.

Gambar 8. Grafik Uji Torsi Tekanan Lubang Pompa Bahan Bakar dan Injektor

Perbandingan antara injektor 3 lubang dan 8 lubang menunjukkan karakteristik kinerja yang berbeda di bawah kondisi tekanan bahan bakar yang bervariasi. Pada tekanan bahan bakar 2,5 bar, injektor 3 lubang menunjukkan kinerja torsi yang lebih unggul, mencapai lebih dari 40 Nm pada sekitar 2000 Rpm. Sebaliknya, injektor 8 lubang menunjukkan kinerja yang sedikit lebih rendah dibandingkan dengan injektor 3 lubang pada tekanan yang sama. Saat tekanan bahan bakar meningkat menjadi 3 bar, kedua jenis injektor menunjukkan peningkatan kinerja torsi, dengan injektor 8 lubang tampaknya outperform injektor 3 lubang. Tren ini berlanjut pada tekanan bahan bakar 3,5 bar, di mana kedua jenis injektor mengalami peningkatan kinerja lebih lanjut, meskipun injektor 8 lubang tetap mempertahankan kinerjanya yang lebih unggul. Namun, setelah mencapai kinerja puncaknya, semua kurva menunjukkan penurunan torsi seiring dengan peningkatan kecepatan mesin, menunjukkan batasan kedua jenis injektor pada kecepatan mesin yang lebih tinggi. Secara keseluruhan, analisis ini menyoroti pengaruh tekanan bahan bakar terhadap kinerja injektor dan menyoroti perbedaan halus antara injektor 3 lubang dan 8 lubang di berbagai kondisi operasi.

4.4 PEMBAHASAN

Dalam menganalisis pengaruh jumlah lubang injektor dan tekanan pompa bahan bakar terhadap tenaga dan torsi, beberapa kesimpulan penting dapat ditarik. Pertama, analisis grafik uji tenaga menunjukkan bahwa pada tekanan pompa bahan bakar 3 bar, baik injektor 6 lubang maupun 8 lubang mencapai tenaga maksimum, sementara pada 2,5 bar, injektor 3 lubang menampilkan output tenaga tertinggi pada kecepatan mesin tertentu. Demikian pula, dalam uji torsi, injektor 3 lubang secara konsisten menghasilkan torsi tertinggi pada 2,5 dan 3,5 bar, sementara injektor 6 lubang berkinerja sebanding pada 3 bar. Hal ini menunjukkan bahwa kinerja injektor bervariasi tergantung pada tekanan pompa bahan bakar dan jumlah lubang, dengan kombinasi yang berbeda menghasilkan hasil optimal pada kecepatan mesin yang berbeda.

Dengan menganalisis lebih lanjut data mengenai pengaruh tekanan pompa bahan bakar terhadap daya dan torsi, terlihat bahwa kombinasi tertentu antara tekanan dan jumlah lubang injektor menghasilkan kinerja yang superior. Misalnya, pada tekanan pompa bahan bakar 3 bar, injektor 6 lubang menghasilkan output daya tertinggi, sementara pada 3,5 bar, injektor 3 lubang menunjukkan torsi tertinggi. Hal ini menyoroti hubungan yang kompleks antara tekanan pompa bahan bakar, desain injektor, dan kinerja mesin. Selain itu, temuan ini menekankan pentingnya memilih kombinasi yang tepat antara tekanan pompa bahan bakar dan jumlah lubang injektor untuk mencapai karakteristik daya dan torsi yang diinginkan, karena faktor-faktor ini secara langsung memengaruhi pengiriman bahan bakar dan atomisasi, yang pada gilirannya mempengaruhi efisiensi pembakaran dan kinerja mesin.

e-ISSN: 3089-3704

KESIMPULAN

Analisis data eksperimental mengungkapkan wawasan yang signifikan mengenai pengaruh jenis injektor dan tekanan pompa bahan bakar terhadap metrik kinerja mesin seperti daya dan torsi. Hasil penelitian menunjukkan bahwa jenis injektor memiliki dampak yang signifikan terhadap output daya dan torsi, dengan injektor yang memiliki lebih banyak lubang umumnya menunjukkan kinerja yang lebih baik. Di sisi lain, meskipun tekanan pompa bahan bakar tidak secara signifikan memengaruhi daya atau torsi secara mandiri, tekanan ini dapat disesuaikan untuk mengoptimalkan kinerja mesin sesuai dengan persyaratan operasional spesifik. Temuan ini menekankan pentingnya memilih kombinasi jenis injektor dan tekanan pompa bahan bakar dengan cermat untuk mengoptimalkan kinerja mesin dalam berbagai kondisi operasional, memberikan wawasan berharga untuk proses penyetelan dan desain mesin.

UCAPAN TERIMA KASIH

Bagian ini berisi ucapan terima kasih kepada pihak yang telah memberikan dukungan kegiatan penelitian. Bagian ini dapat diisi ataupun tidak.

DAFTAR PUSTAKA

- [1] F. cheng Zhao, B. gang Sun, S. Yuan, L. zhi Bao, H. Wei, and Q. he Luo, "Experimental and modeling investigations to improve the performance of the near-zero NOx emissions direct-injection hydrogen engine by injection optimization," *Int. J. Hydrogen Energy*, vol. 49, 2024, doi: 10.1016/j.ijhydene.2023.09.039.
- [2] M. Kumar, R. Gautam, and N. A. Ansari, "Performance characteristics optimization of CRDI engine fuelled with a blend of sesame oil methyl ester and diesel fuel using response surface methodology approach," *Front. Mech. Eng.*, vol. 9, 2023, doi: 10.3389/fmech.2023.1049571.
- [3] H. A. Allami, M. Tabasizadeh, A. Rohani, H. Nayebzadeh, A. Farzad, and M. Hoseinpour, "Modeling and optimization of performance and emission parameters of a diesel engine: A comparative evaluation between date seed oil biodiesel produced via three different heating systems," *Energy Convers. Manag.*, vol. 283, 2023, doi: 10.1016/j.enconman.2023.116909.
- [4] Z. Liu, F. Liu, H. Wei, and L. Zhou, "Effects of ammonia addition on knock suppression and performance optimization of kerosene engine with a passive pre-chamber," *Fuel*, vol. 353, 2023, doi: 10.1016/j.fuel.2023.129189.
- [5] X. Ping, F. Yang, H. Zhang, C. Xing, M. Yu, and Y. Wang, "Investigation and multi-objective optimization of vehicle engine-organic Rankine cycle (ORC) combined system in different driving conditions," *Energy*, vol. 263, 2023, doi: 10.1016/j.energy.2022.125672.
- [6] A. S. El-Shafay, M. S. Gad, Ü. Ağbulut, and E. A. Attia, "Optimization of performance and emission outputs of a CI engine powered with waste fat biodiesel: A detailed RSM, fuzzy multi-objective and MCDM application," *Energy*, vol. 275, 2023, doi: 10.1016/j.energy.2023.127356.
- [7] M. P. Chockalingam, A. P. Gunasekaran, and J. S. Santhappan, "Multi-response optimization on the gasification of cocoa pod (Theobroma cacao) husk and its performance in a multi-fuel engine," *Biomass Convers. Biorefinery*, vol. 13, no. 11, 2023, doi: 10.1007/s13399-022-02553-7.
- [8] C. Xing *et al.*, "Machine learning-based multi-objective optimization and thermodynamic evaluation of organic Rankine cycle (ORC) system for vehicle engine under road condition," *Appl. Therm. Eng.*, vol. 231, 2023, doi: 10.1016/j.applthermaleng.2023.120904.
- [9] S. R. Ariyanto, Suprayitno, and R. Wulandari, "Design of Metallic Catalytic Converter using Pareto Optimization to Improve Engine Performance and Exhaust Emissions," *Automotive Experiences*, vol. 6, no. 1. 2023. doi: 10.31603/ae.7977.
- [10] G. Thodda, V. R. Madhavan, and L. Thangavelu, "Predictive Modelling and Optimization of Performance and Emissions of Acetylene Fuelled CI Engine Using ANN and RSM," *Energy Sources, Part A Recover. Util. Environ. Eff.*, vol. 45, no. 2, 2023, doi: 10.1080/15567036.2020.1829191.
- [11] A. J. Percy and M. Edwin, "Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response

e-ISSN: 3089-3704

- surface methodology," *Energy*, vol. 263, 2023, doi: 10.1016/j.energy.2022.125685.
- [12] I. Veza, M. Spraggon, I. M. R. Fattah, and M. Idris, "Response surface methodology (RSM) for optimizing engine performance and emissions fueled with biofuel: Review of RSM for sustainability energy transition," *Results in Engineering*, vol. 18. 2023. doi: 10.1016/j.rineng.2023.101213.
- [13] C. M. Lai *et al.*, "Optimization and performance characteristics of diesel engine using green fuel blends with nanoparticles additives," *Fuel*, vol. 347, 2023, doi: 10.1016/j.fuel.2023.128462.
- [14] J. V. Tirkey and D. K. Singh, "Performance and emission optimization of CI engine fueled with coconut shell—based producer gas and diesel by using response surface methodology," *Biomass Convers. Biorefinery*, vol. 13, no. 11, 2023, doi: 10.1007/s13399-021-01994-w.
- [15] H. Tarigonda, B. Anjaneyulu, R. Raghurami Reddy, and K. L. Narasimhamu, "Optimization of performance and emission characteristics of a diesel engine in dual-fuel mode with LPG using adaptive-neuro fuzzy inference system model," *Mater. Today Proc.*, 2023, doi: 10.1016/j.matpr.2023.02.290.
- [16] H. Zheng, Z. X. Yang, Y. F. Wang, and D. Z. Zhao, "Transition state performance optimization of propfan engine based on DDPG algorithm," in *Journal of Physics: Conference Series*, 2023. doi: 10.1088/1742-6596/2472/1/012010.
- [17] M. A. Ijaz Malik *et al.*, "Response surface methodology application on lubricant oil degradation, performance, and emissions in SI engine: A novel optimization of alcoholic fuel blends," *Sci. Prog.*, vol. 106, no. 1, 2023, doi: 10.1177/00368504221148342.
- [18] Z. Liu *et al.*, "Multi-objective optimization of the performance and emission characteristics for a dual-fuel engine with hydrogen addition," *Fuel*, vol. 332, 2023, doi: 10.1016/j.fuel.2022.126231.
- [19] R. Raj, D. Kumar Singh, and J. Vachan Tirkey, "Performance simulation and optimization of SI engine fueled with peach biomass-based producer gas and propane blend," *Therm. Sci. Eng. Prog.*, vol. 41, 2023, doi: 10.1016/j.tsep.2023.101816.
- [20] H. Alahmer *et al.*, "Optimal Water Addition in Emulsion Diesel Fuel Using Machine Learning and Sea-Horse Optimizer to Minimize Exhaust Pollutants from Diesel Engine," *Atmosphere (Basel).*, vol. 14, no. 3, 2023, doi: 10.3390/atmos14030449.
- [21] O. Khan, M. Z. Khan, B. K. Bhatt, M. T. Alam, and M. Tripathi, "Multi-objective optimization of diesel engine performance, vibration and emission parameters employing blends of biodiesel, hydrogen and cerium oxide nanoparticles with the aid of response surface methodology approach," *Int. J. Hydrogen Energy*, vol. 48, no. 56, 2023, doi: 10.1016/j.ijhydene.2022.04.044.
- [22] Z. Said *et al.*, "Modeling-optimization of performance and emission characteristics of dual-fuel engine powered with pilot diesel and agricultural-food waste-derived biogas," *Int. J. Hydrogen Energy*, vol. 48, no. 18, 2023, doi: 10.1016/j.ijhydene.2022.07.150.
- [23] S. Lalhriatpuia and A. Pal, "Computational optimization of engine emissions and performance of a CI engine powered with biogas and NiO nanoparticles doped diesel," *Environ. Prog. Sustain. Energy*, vol. 42, no. 6, 2023, doi: 10.1002/ep.14207.
- [24] A. K. Panda, S. K. Rout, and A. K. Das, "Optimization of diesel engine performance and emission using waste plastic pyrolytic oil by ANN and its thermo-economic assessment," *Environ. Sci. Pollut. Res.*, 2023, doi: 10.1007/s11356-023-26891-9.
- [25] R. Raj, J. V. Tirkey, and P. Jena, "Gasification of Briquette, Mahua wood, and Coconut shell and application to CI engines: Comparative performance and optimisation analysis," *Ind. Crops Prod.*, vol. 199, 2023, doi: 10.1016/j.indcrop.2023.116758.
- [26] H. Kokabi, M. Najafi, S. A. Jazayeri, and O. Jahanian, "Performance optimization of RCCI engines running on landfill gas, propane and hydrogen through the deep neural network and genetic algorithm," *Sustain. Energy Technol. Assessments*, vol. 56, 2023, doi: 10.1016/j.seta.2023.103045.
- [27] P. Sharma *et al.*, "Enhancing the performance of renewable biogas powered engine employing oxyhydrogen: Optimization with desirability and D-optimal design," *Fuel*, vol. 341, 2023, doi: 10.1016/j.fuel.2023.127575.
- [28] S. Rafiee, Z. Shabani, B. Khoshnevisan, B. Ghobadian, and A. Nasiri, "Evaluation and

e-ISSN: 3089-3704

optimization of engine performance and exhaust emissions of a diesel engine fueled with diestrol blends," *Environ. Prog. Sustain. Energy*, vol. 42, no. 1, 2023, doi: 10.1002/ep.13938.

e-ISSN: 3089-3704

- [29] M. S. Vinutha and M. C. Padma, "Insights into Search Engine Optimization using Natural Language Processing and Machine Learning," *Int. J. Adv. Comput. Sci. Appl.*, vol. 14, no. 2, 2023, doi: 10.14569/IJACSA.2023.0140211.
- [30] H. Alahmer, A. Alahmer, R. Alkhazaleh, and M. Alrbai, "Exhaust emission reduction of a SI engine using acetone–gasoline fuel blends: Modeling, prediction, and whale optimization algorithm," *Energy Reports*, vol. 9, 2023, doi: 10.1016/j.egyr.2022.10.360.
- [31] K. da Wang *et al.*, "Performance optimization design of direct injection turbocharged hydrogen internal combustion engine," *Appl. Energy Combust. Sci.*, vol. 16, 2023, doi: 10.1016/j.jaecs.2023.100204.
- [32] S. Lalhriatpuia and A. Pal, "Computational optimization of engine performance and emission responses for dual fuel CI engine powered with biogas and Co3O4 nanoparticles doped biodiesel," *Fuel*, vol. 344, 2023, doi: 10.1016/j.fuel.2023.127892.
- [33] H. Aygun, M. Kirmizi, U. Kilic, and O. Turan, "Multi-objective optimization of a small turbojet engine energetic performance," *Energy*, vol. 271, 2023, doi: 10.1016/j.energy.2023.126983.
- [34] D. Tan *et al.*, "Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology," *Energy*, vol. 263, 2023, doi: 10.1016/j.energy.2022.125869.
- [35] P. Jena, R. Raj, J. V. Tirkey, and A. Kumar, "Experimental analysis and optimization of CI engine performance using waste plastic oil and diesel fuel blends," *J. Energy Inst.*, vol. 109, 2023, doi: 10.1016/j.joei.2023.101286.
- [36] H. Alahmer, A. Alahmer, R. Alkhazaleh, and M. I. Al-Amayreh, "Modeling, polynomial regression, and artificial bee colony optimization of SI engine performance improvement powered by acetone–gasoline fuel blends," *Energy Reports*, vol. 9, 2023, doi: 10.1016/j.egyr.2022.12.102.
- [37] R. Chen, J. Yu, Z. Zhao, Y. Li, J. Fu, and T. Chai, "Multiobjective Bayesian Optimization for Aeroengine Using Multiple Information Sources," *IEEE Trans. Ind. Informatics*, vol. 19, no. 11, 2023, doi: 10.1109/TII.2023.3245687.
- [38] S. Chaki and T. K. Biswas, "An ANN-entropy-FA model for prediction and optimization of biodiesel-based engine performance," *Appl. Soft Comput.*, vol. 133, 2023, doi: 10.1016/j.asoc.2022.109929.
- [39] T. F. Wunderlich and F. Siebert, "Optimization of Control Surface Deflections on the High Aspect Ratio Wing to Improve Cruise Flight Performance," in *Notes on Numerical Fluid Mechanics and Multidisciplinary Design*, vol. 154, 2024. doi: 10.1007/978-3-031-40482-5 20.
- [40] A. Mohite, B. J. Bora, Ü. Ağbulut, P. Sharma, B. J. Medhi, and D. Barik, "Optimization of the pilot fuel injection and engine load for an algae biodiesel hydrogen run dual fuel diesel engine using response surface methodology," *Fuel*, vol. 357, 2024, doi: 10.1016/j.fuel.2023.129841.