OPTIMASI KINERJA MESIN DENGAN PENINGKATAN TEKANAN POMPA BAHAN BAKAR DAN VARIASI LUBANG INJEKTOR

  • Ramadhana Luhur Prabangkara Universitas Tunas Pembangunan Surakarta
Keywords: Tekanan Pompa Bahan Bakar, Variasi Lubang Injektor, Kinerja Mesin

Abstract

Penelitian ini bertujuan untuk mengevaluasi dampak tekanan pompa bahan bakar yang meningkat dan variasi jumlah lubang injektor terhadap kinerja mesin. Seiring dengan perkembangan sistem bahan bakar dari karburator ke injeksi untuk meningkatkan efisiensi bahan bakar, penelitian ini melibatkan tiga tingkat tekanan pompa bahan bakar (2,5 bar, 3 bar, dan 3,5 bar) dan variasi jumlah lubang injektor (3, 6, dan 8 lubang). Kinerja mesin, yang diukur melalui daya dan torsi, dievaluasi melalui metode eksperimental. Hasil menunjukkan pengaruh signifikan dari peningkatan tekanan pompa bahan bakar dan variasi jumlah lubang injektor terhadap kinerja mesin. Daya optimal dicapai pada tekanan pompa bahan bakar 3 bar dengan injektor 6 lubang, menghasilkan 11,63 HP pada 6000 rpm. Torsi terbaik tercatat pada tekanan pompa bahan bakar 3,5 bar dengan injektor 3 lubang, menghasilkan 43,10 Nm pada 3000 rpm. Studi ini menyarankan bahwa jumlah lubang injektor yang lebih tinggi umumnya berkorelasi dengan peningkatan daya dan torsi mesin. Penelitian ini memberikan wawasan berharga untuk mengoptimalkan kinerja mesin melalui konfigurasi tekanan pompa bahan bakar dan injektor yang spesifik, berkontribusi pada kemajuan dalam desain dan efisiensi sistem bahan bakar.

References

F. cheng Zhao, B. gang Sun, S. Yuan, L. zhi Bao, H. Wei, and Q. he Luo, “Experimental and modeling investigations to improve the performance of the near-zero NOx emissions direct-injection hydrogen engine by injection optimization,” Int. J. Hydrogen Energy, vol. 49, 2024, doi: 10.1016/j.ijhydene.2023.09.039.

M. Kumar, R. Gautam, and N. A. Ansari, “Performance characteristics optimization of CRDI engine fuelled with a blend of sesame oil methyl ester and diesel fuel using response surface methodology approach,” Front. Mech. Eng., vol. 9, 2023, doi: 10.3389/fmech.2023.1049571.

H. A. Allami, M. Tabasizadeh, A. Rohani, H. Nayebzadeh, A. Farzad, and M. Hoseinpour, “Modeling and optimization of performance and emission parameters of a diesel engine: A comparative evaluation between date seed oil biodiesel produced via three different heating systems,” Energy Convers. Manag., vol. 283, 2023, doi: 10.1016/j.enconman.2023.116909.

Z. Liu, F. Liu, H. Wei, and L. Zhou, “Effects of ammonia addition on knock suppression and performance optimization of kerosene engine with a passive pre-chamber,” Fuel, vol. 353, 2023, doi: 10.1016/j.fuel.2023.129189.

X. Ping, F. Yang, H. Zhang, C. Xing, M. Yu, and Y. Wang, “Investigation and multi-objective optimization of vehicle engine-organic Rankine cycle (ORC) combined system in different driving conditions,” Energy, vol. 263, 2023, doi: 10.1016/j.energy.2022.125672.

A. S. El-Shafay, M. S. Gad, Ü. A?bulut, and E. A. Attia, “Optimization of performance and emission outputs of a CI engine powered with waste fat biodiesel: A detailed RSM, fuzzy multi-objective and MCDM application,” Energy, vol. 275, 2023, doi: 10.1016/j.energy.2023.127356.

M. P. Chockalingam, A. P. Gunasekaran, and J. S. Santhappan, “Multi-response optimization on the gasification of cocoa pod (Theobroma cacao) husk and its performance in a multi-fuel engine,” Biomass Convers. Biorefinery, vol. 13, no. 11, 2023, doi: 10.1007/s13399-022-02553-7.

C. Xing et al., “Machine learning-based multi-objective optimization and thermodynamic evaluation of organic Rankine cycle (ORC) system for vehicle engine under road condition,” Appl. Therm. Eng., vol. 231, 2023, doi: 10.1016/j.applthermaleng.2023.120904.

S. R. Ariyanto, Suprayitno, and R. Wulandari, “Design of Metallic Catalytic Converter using Pareto Optimization to Improve Engine Performance and Exhaust Emissions,” Automotive Experiences, vol. 6, no. 1. 2023. doi: 10.31603/ae.7977.

G. Thodda, V. R. Madhavan, and L. Thangavelu, “Predictive Modelling and Optimization of Performance and Emissions of Acetylene Fuelled CI Engine Using ANN and RSM,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 45, no. 2, 2023, doi: 10.1080/15567036.2020.1829191.

A. J. Percy and M. Edwin, “Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology,” Energy, vol. 263, 2023, doi: 10.1016/j.energy.2022.125685.

I. Veza, M. Spraggon, I. M. R. Fattah, and M. Idris, “Response surface methodology (RSM) for optimizing engine performance and emissions fueled with biofuel: Review of RSM for sustainability energy transition,” Results in Engineering, vol. 18. 2023. doi: 10.1016/j.rineng.2023.101213.

C. M. Lai et al., “Optimization and performance characteristics of diesel engine using green fuel blends with nanoparticles additives,” Fuel, vol. 347, 2023, doi: 10.1016/j.fuel.2023.128462.

J. V. Tirkey and D. K. Singh, “Performance and emission optimization of CI engine fueled with coconut shell–based producer gas and diesel by using response surface methodology,” Biomass Convers. Biorefinery, vol. 13, no. 11, 2023, doi: 10.1007/s13399-021-01994-w.

H. Tarigonda, B. Anjaneyulu, R. Raghurami Reddy, and K. L. Narasimhamu, “Optimization of performance and emission characteristics of a diesel engine in dual-fuel mode with LPG using adaptive-neuro fuzzy inference system model,” Mater. Today Proc., 2023, doi: 10.1016/j.matpr.2023.02.290.

H. Zheng, Z. X. Yang, Y. F. Wang, and D. Z. Zhao, “Transition state performance optimization of propfan engine based on DDPG algorithm,” in Journal of Physics: Conference Series, 2023. doi: 10.1088/1742-6596/2472/1/012010.

M. A. Ijaz Malik et al., “Response surface methodology application on lubricant oil degradation, performance, and emissions in SI engine: A novel optimization of alcoholic fuel blends,” Sci. Prog., vol. 106, no. 1, 2023, doi: 10.1177/00368504221148342.

Z. Liu et al., “Multi-objective optimization of the performance and emission characteristics for a dual-fuel engine with hydrogen addition,” Fuel, vol. 332, 2023, doi: 10.1016/j.fuel.2022.126231.

R. Raj, D. Kumar Singh, and J. Vachan Tirkey, “Performance simulation and optimization of SI engine fueled with peach biomass-based producer gas and propane blend,” Therm. Sci. Eng. Prog., vol. 41, 2023, doi: 10.1016/j.tsep.2023.101816.

H. Alahmer et al., “Optimal Water Addition in Emulsion Diesel Fuel Using Machine Learning and Sea-Horse Optimizer to Minimize Exhaust Pollutants from Diesel Engine,” Atmosphere (Basel)., vol. 14, no. 3, 2023, doi: 10.3390/atmos14030449.

O. Khan, M. Z. Khan, B. K. Bhatt, M. T. Alam, and M. Tripathi, “Multi-objective optimization of diesel engine performance, vibration and emission parameters employing blends of biodiesel, hydrogen and cerium oxide nanoparticles with the aid of response surface methodology approach,” Int. J. Hydrogen Energy, vol. 48, no. 56, 2023, doi: 10.1016/j.ijhydene.2022.04.044.

Z. Said et al., “Modeling-optimization of performance and emission characteristics of dual-fuel engine powered with pilot diesel and agricultural-food waste-derived biogas,” Int. J. Hydrogen Energy, vol. 48, no. 18, 2023, doi: 10.1016/j.ijhydene.2022.07.150.

S. Lalhriatpuia and A. Pal, “Computational optimization of engine emissions and performance of a CI engine powered with biogas and NiO nanoparticles doped diesel,” Environ. Prog. Sustain. Energy, vol. 42, no. 6, 2023, doi: 10.1002/ep.14207.

A. K. Panda, S. K. Rout, and A. K. Das, “Optimization of diesel engine performance and emission using waste plastic pyrolytic oil by ANN and its thermo-economic assessment,” Environ. Sci. Pollut. Res., 2023, doi: 10.1007/s11356-023-26891-9.

R. Raj, J. V. Tirkey, and P. Jena, “Gasification of Briquette, Mahua wood, and Coconut shell and application to CI engines: Comparative performance and optimisation analysis,” Ind. Crops Prod., vol. 199, 2023, doi: 10.1016/j.indcrop.2023.116758.

H. Kokabi, M. Najafi, S. A. Jazayeri, and O. Jahanian, “Performance optimization of RCCI engines running on landfill gas, propane and hydrogen through the deep neural network and genetic algorithm,” Sustain. Energy Technol. Assessments, vol. 56, 2023, doi: 10.1016/j.seta.2023.103045.

P. Sharma et al., “Enhancing the performance of renewable biogas powered engine employing oxyhydrogen: Optimization with desirability and D-optimal design,” Fuel, vol. 341, 2023, doi: 10.1016/j.fuel.2023.127575.

S. Rafiee, Z. Shabani, B. Khoshnevisan, B. Ghobadian, and A. Nasiri, “Evaluation and optimization of engine performance and exhaust emissions of a diesel engine fueled with diestrol blends,” Environ. Prog. Sustain. Energy, vol. 42, no. 1, 2023, doi: 10.1002/ep.13938.

M. S. Vinutha and M. C. Padma, “Insights into Search Engine Optimization using Natural Language Processing and Machine Learning,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 2, 2023, doi: 10.14569/IJACSA.2023.0140211.

H. Alahmer, A. Alahmer, R. Alkhazaleh, and M. Alrbai, “Exhaust emission reduction of a SI engine using acetone–gasoline fuel blends: Modeling, prediction, and whale optimization algorithm,” Energy Reports, vol. 9, 2023, doi: 10.1016/j.egyr.2022.10.360.

K. da Wang et al., “Performance optimization design of direct injection turbocharged hydrogen internal combustion engine,” Appl. Energy Combust. Sci., vol. 16, 2023, doi: 10.1016/j.jaecs.2023.100204.

S. Lalhriatpuia and A. Pal, “Computational optimization of engine performance and emission responses for dual fuel CI engine powered with biogas and Co3O4 nanoparticles doped biodiesel,” Fuel, vol. 344, 2023, doi: 10.1016/j.fuel.2023.127892.

H. Aygun, M. Kirmizi, U. Kilic, and O. Turan, “Multi-objective optimization of a small turbojet engine energetic performance,” Energy, vol. 271, 2023, doi: 10.1016/j.energy.2023.126983.

D. Tan et al., “Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology,” Energy, vol. 263, 2023, doi: 10.1016/j.energy.2022.125869.

P. Jena, R. Raj, J. V. Tirkey, and A. Kumar, “Experimental analysis and optimization of CI engine performance using waste plastic oil and diesel fuel blends,” J. Energy Inst., vol. 109, 2023, doi: 10.1016/j.joei.2023.101286.

H. Alahmer, A. Alahmer, R. Alkhazaleh, and M. I. Al-Amayreh, “Modeling, polynomial regression, and artificial bee colony optimization of SI engine performance improvement powered by acetone–gasoline fuel blends,” Energy Reports, vol. 9, 2023, doi: 10.1016/j.egyr.2022.12.102.

R. Chen, J. Yu, Z. Zhao, Y. Li, J. Fu, and T. Chai, “Multiobjective Bayesian Optimization for Aeroengine Using Multiple Information Sources,” IEEE Trans. Ind. Informatics, vol. 19, no. 11, 2023, doi: 10.1109/TII.2023.3245687.

S. Chaki and T. K. Biswas, “An ANN-entropy-FA model for prediction and optimization of biodiesel-based engine performance,” Appl. Soft Comput., vol. 133, 2023, doi: 10.1016/j.asoc.2022.109929.

T. F. Wunderlich and F. Siebert, “Optimization of Control Surface Deflections on the High Aspect Ratio Wing to Improve Cruise Flight Performance,” in Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 154, 2024. doi: 10.1007/978-3-031-40482-5_20.

A. Mohite, B. J. Bora, Ü. A?bulut, P. Sharma, B. J. Medhi, and D. Barik, “Optimization of the pilot fuel injection and engine load for an algae biodiesel - hydrogen run dual fuel diesel engine using response surface methodology,” Fuel, vol. 357, 2024, doi: 10.1016/j.fuel.2023.129841.

Published
2025-07-25
Section
Articles